scholarly journals Stem cells in Nanomia bijuga (Siphonophora), a colonial animal with localized growth zones

2014 ◽  
Author(s):  
Stefan Siebert ◽  
Freya E. Goetz ◽  
Samuel H. Church ◽  
Pathikrit Bhattacharyya ◽  
Felipe Zapata ◽  
...  

Background: Siphonophores (Hydrozoa) have unparalleled colony-level complexity, precision of colony organization, and functional specialization between zooids (i.e., the units that make up colonies). Previous work has shown that, unlike other colonial animals, most growth in siphonophores is restricted to one or two well-defined growth zones that are the sites of both elongation and zooid budding. It remained unknown, however, how this unique colony growth and development is realized at the cellular level. Results: To understand the colony-level growth and development of siphonophores at the cellular level, we characterize the distribution of proliferating cells and interstitial stem cells (i-cells) in the siphonophore Nanomia bijuga. Within the colony we find that i-cells are present at the tip of the horn, the structure within the growth zone that gives rise to new zooids. They persist in the youngest zooid buds, but as each zooid matures i-cells become progressively restricted to specific regions within the zooids until they are mostly absent from the oldest zooids. I-cell marker-gene expression remained in gametogenic regions. I-cells are not found in the stem between maturing zooids. Domains of high cell proliferation include regions where i-cells can be found, but also include some areas without i-cells such as the stem within the growth zones. Cell proliferation in regions devoid of marker gene expression indicates the presence of mitotically active epithelial cell lineages and, potentially, progenitor cell populations. Conclusions: Restriction of stem cells to particular regions in the colony may play a major role in facilitating the precision of siphonophore growth, and also lead to a reduced developmental plasticity in other, typically older, parts of the colony. This helps explain why siphonophore colonies have such precise colony-level organization.

2009 ◽  
Vol 21 (1) ◽  
pp. 241
Author(s):  
M. T. Zhao ◽  
C. S. Isom ◽  
J. G. Zhao ◽  
Y. H. Hao ◽  
J. Ross ◽  
...  

Recently neural crest derived multipotent progenitors from skin have attracted much attention as the skin may provide an accessible, autologous source of stem cells available with therapeutic potential (Toma JG et al. 2001 Nat. Cell Biol. 3, 778–784). The multipotent property of stem cells could be tracked back to the expression of specific marker genes that are exclusively expressed in multipotent stem cells rather than any other types of differentiated cells. Here we demonstrate the property of multipotency and neural crest origin of porcine GFP-transgenic skin derived progenitors (termed pSKP) in vitro by marker gene expression analysis. The pSKP cells were isolated from the back skin of GFP transgenic fetuses by serum-free selection culture in the presence of EGF (20 ng mL–1) and bFGF (40 ng mL–1), and developed into spheres in 1–2 weeks (Dyce PW et al. 2004 Biochem. Biophy. Res. Commun. 316, 651–658). Three groups of RT-PCR primers were used on total RNA from purified pSKP cells: pluripotency related genes (Oct4, Sox2, Nanog, Stat3), neural crest marker genes (p75NGFR, Slug, Twist, Pax3, Sox9, Sox10) and lineage specific genes (GFAP, tubulin β-III, leptin). Expression of both pluripotency related genes and neural crest marker genes were detected in undifferentiated pSKP cells. In addition, transcripts for fibronectin, vimentin and nestin (neural stem cell marker) were also present. The percentage of positive cells for Oct4, fibronection and vimentin were 12.3%, 67.9% and 53.7% respectively. Differentiation assays showed the appearance of tubulin β-III positive (39.4%) and GFAP-positive (42.6%) cells in cultures by immunocytochemistry, which share the characteristics of neurons and glial cells, respectively. Thus, we confirm the multiple lineage potentials and neural crest origin of pSKP cells in the level of marker gene expression. This work was funded by National Institutes of Health National Center for Research Resources RR013438.


2019 ◽  
Vol 8 (9) ◽  
pp. 414-424 ◽  
Author(s):  
Jonas Schmalzl ◽  
Piet Plumhoff ◽  
Fabian Gilbert ◽  
Frank Gohlke ◽  
Christian Konrads ◽  
...  

Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2.


Biologia ◽  
2015 ◽  
Vol 70 (10) ◽  
Author(s):  
Yu Zhang ◽  
Pu Feng ◽  
Jianhong Yang

AbstractIncreased risk of osteoporosis in patients with diabetes mellitus may be related to hyperglycemia. However, the potential mechanisms accounting for diabetic bone disorder remain unresolved. The present study investigated the effects of high glucose-associated osmolality on differentiation of primary rat calvarial osteoblasts. Osteoblastogenic differentiation was determined by bone nodule staining for mineralization assay, enzyme-linked immunosorbent assay for type I collagen production and real-time polymerase chain reaction (PCR) for osteoblastogenic marker gene expression. Adipocytogenic differentiation was assessed by oil red O staining for lipid accumulation and real-time PCR for adipocytogenic marker gene expression. The phosphorylations of protein kinase A (PKA) and Akt were measured with or without specific inhibitors to confirm osmolality involved signalling pathways. The results showed that high glucose-associated osmolality significantly promoted adipocytogenic differentiation, manifested by increased lipid droplet formation and gene expression of adipocytogenic markers including adipocyte fatty acid binding protein (aP2), adipsin and peroxisome proliferator-activated receptor gamma (PPARγ). Meanwhile, high glucose-associated osmolality inhibited osteoblastogenic differentiation, characterized by decreased collagen I protein production and cell mineralization, as well as gene expression of osteoblastogenic markers including collagen I, osteocalcin and runt-related transcription factor 2 (Runx2). More importantly, we demonstrated for the first time that high glucose-associated osmolality induced adipocytogenic differentiation and suppressed osteoblastogenic differentiation in a PKA and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. These results indicated that osmolality was involved in high glucose-induced osteoblast trans-differentiation into adipocyte-like cell and suppression of cellular osmolality could provide novel therapeutic approach for diabetic osteopenia.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 414
Author(s):  
Jing Gao ◽  
Steve Arthurs ◽  
Runqian Mao

Indirect interactions between herbivorous insects that share the same host have been focused on insects feeding on herbaceous plants, while few studies investigate similar interactions on woody plants. We investigated performance and feeding behavior of two citrus aphids, Aphis spiraecola Patch and Toxoptera citricida Kirkaldy, on sweet orange as affected by prior infestation of conspecifics and heterospecifics. Results showed that pre-infestation-induced interactions between A. spiraecola and T. citricida were asymmetric, with A. spiraecola gaining more fitness. In detail, pre-infestation by A. spiraecola decreased adult weight, enhanced survival rate and accelerated phloem sap acceptance of conspecifics. However, A. spiraecola pre-infestation did not affect performance or feeding behavior of T. citricida. In another infestation sequence, the pre-infestation of T. citricida did not affect conspecifics, but positively affected heterospecifics, indicated as a decreased pre-reproductive period, enhanced survival rate, adult weight, fecundity, and feeding efficiency, i.e., faster access and acceptance of phloem sap, and longer phloem sap ingestion duration. Furthermore, we found A. spiraecola pre-infestation enhanced amino acid concentration, amino acid to sugar ratio, activated salicylic acid and jasmonic acid marker gene expression, while T. citricida pre-infestation only depressed jasmonic acid marker gene expression. Changes in nutrient and phytohormone-dependent defense probably underlie the asymmetric effect.


Sign in / Sign up

Export Citation Format

Share Document