scholarly journals CRISPR with independent transgenes is a safe and robust alternative to autonomous gene drives in basic research

2015 ◽  
Author(s):  
Fillip Port ◽  
Nadine Muschalik ◽  
Simon L Bullock

CRISPR/Cas technology allows rapid, site-specific genome modification in a wide variety of organisms. CRISPR components produced by integrated transgenes have been shown to mutagenise some genomic target sites in Drosophila melanogaster with high efficiency, but whether this is a general feature of this system remains unknown. Here, we systematically evaluate available CRISPR/Cas reagents and experimental designs in Drosophila. Our findings allow evidence-based choices of Cas9 sources and strategies for generating knock-in alleles. We perform gene editing at a large number of target sites using a highly active Cas9 line and a collection of transgenic gRNA strains. The vast majority of target sites can be mutated with remarkable efficiency using these tools. We contrast our method to recently developed autonomous gene drive technology for genome engineering (Gantz & Bier, 2015) and conclude that optimised CRISPR with independent transgenes is as efficient, more versatile and does not represent a biosafety risk.

2021 ◽  
pp. 137-152
Author(s):  
Lei Pei ◽  
Markus Schmidt

Abstract Gene drives, particularly synthetic gene drives, may help to address some important challenges, by efficiently altering specific sections of DNA in entire populations of wild organisms. Here we review the current development of the synthetic gene drives, especially those RNA-guided synthetic gene drives based on the CRISPR nuclease Cas. Particular focuses are on their possible applications in agriculture (e.g. disease resistance, weed control management), ecosystem conservation (e.g. evasion species control), health (e.g. to combat insect-borne and fungal infections), and for basic research in model organisms (e.g. Saccharomyces, fruit fly, and zebra fish). The physical, chemical, biological, and ecological containment strategies that might help to confine these gene drive-modified organisms are then explored. The gene flow issues, those from gene drive-derived organisms to the environment, are discussed, while possible mitigation strategies for gene drive research are explored. Last but not least, the regulatory context and opinions from key stakeholders (regulators, scientists, and concerned organizations) are reviewed, aiming to provide a more comprehensive overview of the field.


2020 ◽  
Author(s):  
Xi Xiang ◽  
Kunli Qu ◽  
Xue Liang ◽  
Xiaoguang Pan ◽  
Jun Wang ◽  
...  

AbstractThe CRISPR RNA-guided endonucleases Cas9, and Cas9-derived adenine/cytosine base editors (ABE/CBE), have been used in both research and therapeutic applications. However, broader use of this gene editing toolbox is hampered by the great variability of efficiency among different target sites. Here we present TRAP-seq, a versatile and scalable approach in which the CRISPR gRNA expression cassette and the corresponding surrogate site are captured by Targeted Reporter Anchored Positional Sequencing in cells. TRAP-seq can faithfully recapitulate the CRISPR gene editing outcomes introduced to the corresponding endogenous genome site and most importantly enables massively parallel quantification of CRISPR gene editing in cells. We demonstrate the utility of this technology for high-throughput quantification of SpCas9 editing efficiency and indel outcomes for 12,000 gRNAs in human embryonic kidney cells. Using this approach, we also showed that TRAP-seq enables high throughput quantification of both ABE and CBE efficiency at 12,000 sites in cells. This rich amount of ABE/CBE outcome data enable us to reveal several novel nucleotide features (e.g. preference of flanking bases, nucleotide motifs, STOP recoding types) affecting base editing efficiency, as well as designing improved machine learning-based prediction tools for designing SpCas9, ABE and CBE gRNAs of high efficiency and accuracy (>70%). We have integrated all the 12,000 CRISPR gene editing outcomes for SpCas9, ABE and CBE into a CRISPR-centered portal: The Human CRISPR Atlas. This study extends our knowledge on CRISPR gene and base editing, and will facilitate the application and development of CRISPR in both research and therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vera Pavese ◽  
Andrea Moglia ◽  
Elena Corredoira ◽  
Mª Teresa Martínez ◽  
Daniela Torello Marinoni ◽  
...  

CRISPR/Cas9 has emerged as the most important tool for genome engineering due to its simplicity, design flexibility, and high efficiency. This technology makes it possible to induce point mutations in one or some target sequences simultaneously, as well as to introduce new genetic variants by homology-directed recombination. However, this approach remains largely unexplored in forest species. In this study, we reported the first example of CRISPR/Cas9-mediated gene editing in Castanea genus. As a proof of concept, we targeted the gene encoding phytoene desaturase (pds), whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Globular and early torpedo-stage somatic embryos of Castanea sativa (European chestnut) were cocultured for 5 days with a CRISPR/Cas9 construct targeting two conserved gene regions of pds and subsequently cultured on a selection medium with kanamycin. After 8 weeks of subculture on selection medium, four kanamycin-resistant embryogenetic lines were isolated. Genotyping of these lines through target Sanger sequencing of amplicons revealed successful gene editing. Cotyledonary somatic embryos were maturated on maltose 3% and cold-stored at 4°C for 2 months. Subsequently, embryos were subjected to the germination process to produce albino plants. This study opens the way to the use of the CRISPR/Cas9 system in European chestnut for biotechnological applications


2019 ◽  
Vol 10 (2) ◽  
pp. 827-837 ◽  
Author(s):  
Nikolay P. Kandul ◽  
Junru Liu ◽  
Anna Buchman ◽  
Valentino M. Gantz ◽  
Ethan Bier ◽  
...  

Homing based gene drives (HGD) possess the potential to spread linked cargo genes into natural populations and are poised to revolutionize population control of animals. Given that host encoded genes have been identified that are important for pathogen transmission, targeting these genes using guide RNAs as cargo genes linked to drives may provide a robust method to prevent disease transmission. However, effectiveness of the inclusion of additional guide RNAs that target separate genes has not been thoroughly explored. To test this approach, we generated a split-HGD in Drosophila melanogaster that encoded a drive linked effector consisting of a second gRNA engineered to target a separate host-encoded gene, which we term a gRNA-mediated effector (GME). This design enabled us to assess homing and knockout efficiencies of two target genes simultaneously, and also explore the timing and tissue specificity of Cas9 expression on cleavage/homing rates. We demonstrate that inclusion of a GME can result in high efficiency of disruption of both genes during super-Mendelian propagation of split-HGD. Furthermore, both genes were knocked out one generation earlier than expected indicating the robust somatic expression of Cas9 driven by Drosophila germline-limited promoters. We also assess the efficiency of ‘shadow drive’ generated by maternally deposited Cas9 protein and accumulation of drive-induced resistance alleles along multiple generations, and discuss design principles of HGD that could mitigate the accumulation of resistance alleles while incorporating a GME.


2019 ◽  
Vol 2019 (1) ◽  
pp. 66-81 ◽  
Author(s):  
James J Bull ◽  
Christopher H Remien ◽  
Stephen M Krone

AbstractBackground and objectivesGenetic engineering combined with CRISPR technology has developed to the point that gene drives can, in theory, be engineered to cause extinction in countless species. Success of extinction programs now rests on the possibility of resistance evolution, which is largely unknown. Depending on the gene-drive technology, resistance may take many forms, from mutations in the nuclease target sequence (e.g. for CRISPR) to specific types of non-random population structures that limit the drive (that may block potentially any gene-drive technology).MethodologyWe develop mathematical models of various deviations from random mating to consider escapes from extinction-causing gene drives. A main emphasis here is sib mating in the face of recessive-lethal and Y-chromosome drives.ResultsSib mating easily evolves in response to both kinds of gene drives and maintains mean fitness above 0, with equilibrium fitness depending on the level of inbreeding depression. Environmental determination of sib mating (as might stem from population density crashes) can also maintain mean fitness above 0. A version of Maynard Smith’s haystack model shows that pre-existing population structure can enable drive-free subpopulations to be maintained against gene drives.Conclusions and implicationsTranslation of mean fitness into population size depends on ecological details, so understanding mean fitness evolution and dynamics is merely the first step in predicting extinction. Nonetheless, these results point to possible escapes from gene-drive-mediated extinctions that lie beyond the control of genome engineering.Lay summaryRecent gene drive technologies promise to suppress and even eradicate pests and disease vectors. Simple models of gene-drive evolution in structured populations show that extinction-causing gene drives can be thwarted both through the evolution of sib mating as well as from purely demographic processes that cluster drive-free individuals.


2019 ◽  
Author(s):  
Nikolay P. Kandul ◽  
Junru Liu ◽  
Anna Buchman ◽  
Valentino M. Gantz ◽  
Ethan Bier ◽  
...  

AbstractHoming based gene drives (HGD) possess the potential to spread linked cargo genes into natural populations and are poised to revolutionize population control of animals. Given that host-encoded genes have been identified that are important for pathogen transmission, targeting these genes using guide RNAs as cargo genes linked to drives may provide a robust method to prevent transmission. However, effectiveness of the inclusion of additional guide RNAs that target separate host encoded genes has not been thoroughly explored. To test this approach, here we generated a split-HGD in Drosophila melanogaster that encoded a drive linked effector consisting of a second gRNA engineered to target a separate host encoded gene, which we term a gRNA-mediated effector (GME). This design enabled us to assess homing and knockout efficiencies of two target genes simultaneously, and also explore the timing and tissue specificity of Cas9 expression on cleavage/homing rates. We demonstrate that inclusion of a GME can result in high efficiency of disruption of its target gene during super-Mendelian propagation of split-HGD. However, maternal deposition and embryonic expression of Cas9 resulted in the generation of drive resistant alleles which can accumulate and limit the spread of such a drive. Alternative design principles are discussed that could mitigate the accumulation of resistance alleles while incorporating a GME.


2019 ◽  
Author(s):  
James J Bull ◽  
Christopher H Remien ◽  
Stephen M Krone

AbstractGenetic engineering combined with CRISPR technology has developed to the point that gene drives can, in theory, be engineered to cause extinction in countless species. Success of extinction programs now rests on the possibility of resistance evolution, which is largely unknown. For CRISPR technology, resistance may take many forms, from mutations in the nuclease target sequence to specific types of non-random population structures that limit the drive. We develop mathematical models of various deviations from random mating to consider escapes from extinction-causing gene drives. We use a version of Maynard Smith’s haystack model to show that population structure can enable drive-free subpopulations to be maintained against gene drives. Our main emphasis, however, is sib mating in the face of recessive-lethal and Y-chromosome drives. Sib mating easily evolves in response to both kinds of gene drives and maintains mean fitness above 0, with equilibrium fitness depending on the level of inbreeding depression. Environmental determination of sib mating (as might stem from population density crashes) can also maintain mean fitness above 0. Translation of mean fitness into population size depends on ecological details, so understanding mean fitness evolution and dynamics is merely the first step in predicting extinction. Nonetheless, these results point to possible escapes from gene drive-mediated extinctions that lie beyond the control of genome engineering.


2020 ◽  
Author(s):  
Matthew Wheatley ◽  
Yinong Yang

New tools and advanced technologies have played key roles in facilitating basic research in plant pathology and practical approaches for disease management and crop health. Recently, the CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR associated) system has emerged as a powerful and versatile tool for genome editing and other molecular applications. This review aims to introduce and highlight the CRISPR/Cas toolkit and its current and future impact on plant pathology and disease management. We will cover the rapidly expanding horizon of various CRISPR/Cas applications in the basic study of plant-pathogen interactions, genome engineering of plant disease resistance, and molecular diagnosis of diverse pathogens. Using the citrus greening disease as an example, various CRISPR/Cas-enabled strategies are presented to precisely edit the host genome for disease resistance, to rapidly detect the pathogen for disease management, and to potentially use gene drive for insect population control. At the cutting edge of nucleic acid manipulation and detection, the CRISPR/Cas toolkit will accelerate plant breeding and reshape crop production and disease management as we face the challenges in 21st century agriculture.


2020 ◽  
Vol 42 (12) ◽  
pp. 1369-1380
Author(s):  
Zhabiz Golkar

AbstractCRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is one of the hallmark of biological tools, contemplated as a valid and hopeful alternatives to genome editing. Advancements in CRISPR-based technologies have empowered scientists with an editing kit that allows them to employ their knowledge for deleting, replacing and lately “Gene Surgery”, and provides unique control over genes in broad range of species, and presumably in humans. These fast-growing technologies have high strength and flexibility and are becoming an adaptable tool with implementations that are altering organism’s genome and easily used for chromatin manipulation. In addition to the popularity of CRISPR in genome engineering and modern biology, this major tool authorizes breakthrough discoveries and methodological advancements in science. As scientists are developing new types of experiments, some of the applications are raising questions about what CRISPR can enable. The results of evidence-based research strongly suggest that CRISPR is becoming a practical tool for genome-engineering and to create genetically modified eukaryotes, which is needed to establish guidelines on new regulatory concerns for scientific communities.


2021 ◽  
Vol 22 (24) ◽  
pp. 13301
Author(s):  
Dan Zhu ◽  
Junyi Wang ◽  
Di Yang ◽  
Jianzhong Xi ◽  
Juan Li

CRISPR/Cas12a (formerly Cpf1), an RNA-guided endonuclease of the Class II Type V-A CRISPR system, provides a promising tool for genome engineering. Over 10 Cas12a orthologues have been identified and employed for gene editing in human cells. However, the functional diversity among emerging Cas12a orthologues remains poorly explored. Here, we report a high-throughput comparative profiling of editing activities across 16 Cas12a orthologues in human cells by constructing genome-integrated, self-cleaving, paired crRNA–target libraries containing >40,000 guide RNAs. Three Cas12a candidates exhibited promising potential owing to their compact structures and editing efficiency comparable with those of AsCas12a and LbCas12a, which are well characterized. We generated three arginine substitution variants (3Rv) via structure-guided protein engineering: BsCas12a-3Rv (K155R/N512R/K518R), PrCas12a-3Rv (E162R/N519R/K525R), and Mb3Cas12a-3Rv (D180R/N581R/K587R). All three Cas12a variants showed enhanced editing activities and expanded targeting ranges (NTTV, NTCV, and TRTV) compared with the wild-type Cas12a effectors. The base preference analysis among the three Cas12a variants revealed that PrCas12a-3Rv shows the highest activity at target sites with canonical PAM TTTV and non-canonical PAM TTCV, while Mb3Cas12a-3Rv exhibits recognition features distinct from the others by accommodating for more nucleotide A at position −3 for PAM TATV and at position −4 for PAM ATCV. Thus, the expanded Cas12a toolbox and an improved understanding of Cas12a activities should facilitate their use in genome engineering.


Sign in / Sign up

Export Citation Format

Share Document