scholarly journals Population Structure Analysis of Globally Diverse Bull Genomes

2016 ◽  
Author(s):  
Neo Christopher Chung ◽  
Joanna Szyda ◽  
Magdalena Fra̧szczak ◽  

AbstractSince domestication, population bottlenecks, breed formation, and selective breeding have radically shaped the genealogy and genetics of Bos taurus. In turn, characterization of population structure among globally diverse bull genomes enables detailed assessment of genetic resources and origins. By analyzing 432 unrelated bull genomes from 13 breeds and 16 countries, we demonstrate genetic diversity and structural complexity among the global bull population. Importantly, we relaxed a strong assumption of discrete or admixed population, by adapting latent variable models for individual-specific allele frequencies that directly capture a wide range of complex structure from genome-wide genotypes. We identified a highly complex population structure that defies the conventional hypothesis based on discrete membership and contributes to pervasive genetic differentiation in bull genomes. As measured by magnitude of differentiation, selection pressure on SNPs within genes is substantially greater than that on intergenic regions. Additionally, broad regions of chromosome 6 harboring largest genetic differentiation suggest positive selection underlying population structure. We carried out gene set analysis using SNP annotations to identify enriched functional categories such as energy-related processes and multiple development stages. Our comprehensive analysis of bull population structure can support genetic management strategies that capture structural complexity and promote sustainable genetic breadth.

2021 ◽  
Author(s):  
◽  
Luke Thomas

<p>Understanding patterns of gene flow across a species range is a vital component of an effective fisheries management strategy. The advent of highly polymorphic microsatellite markers has facilitated the detection of fine-scale patterns of genetic differentiation at levels below the resolving power of earlier techniques. This has triggered the wide-spread re-examination of population structure for a number of commercially targeted species. The aims of thesis were to re-investigate patterns of gene flow of the red rock lobster Jasus edwardsii throughout New Zealand and across the Tasman Sea using novel microsatellite markers. Jasus edwardsii is a keystone species of subtidal rocky reef system and supports lucrative export markets in both Australia and New Zealand. Eight highly polymorphic microsatellite markers were developed from 454 sequence data and screened across a Wellington south coast population to obtain basic diversity indices. All loci were polymorphic with the number of alleles per locus ranging from 6-39. Observed and expected heterozygosity ranged from 0.563-0.937 and 0.583-0.961, respectively. There were no significant deviations from Hardy-Weinberg equilibrium following standard Bonferroni corrections. The loci were used in a population analysis of J. edwardsii that spanned 10 degrees of latitude and stretched 3,500 km across the South Pacific. The analysis rejected the null-hypothesis of panmixia based on earlier mDNA analysis and revealed significant population structure (FST=0.011, RST=0.028) at a wide range of scales. Stewart Island was determined to have the highest levels of genetic differentiation of all populations sampled suggesting a high degree of reproductive isolation and self-recruitment. This study also identified high levels of asymmetric gene flow from Australia to New Zealand indicating a historical source-sink relationship between the two countries. Results from the genetic analysis were consistent with results from oceanographic dispersal models and it is likely that the genetic results reflect historical and contemporary patterns of Jasus edwardsii dispersal and recruitment throughout its range.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manosh Kumar Biswas ◽  
Mita Bagchi ◽  
Ujjal Kumar Nath ◽  
Dhiman Biswas ◽  
Sathishkumar Natarajan ◽  
...  

Abstract Lily belongs to family liliaceae, which mainly propagates vegetatively. Therefore, sufficient number of polymorphic, informative, and functional molecular markers are essential for studying a wide range of genetic parameters in Lilium species. We attempted to develop, characterize and design SSR (simple sequence repeat) markers using online genetic resources for analyzing genetic diversity and population structure of Lilium species. We found di-nucleotide repeat motif were more frequent (4684) within 0.14 gb (giga bases) transcriptome than other repeats, of which was two times higher than tetra-repeat motifs. Frequency of di-(AG/CT), tri-(AGG/CTT), tetra-(AAAT), penta-(AGAGG), and hexa-(AGAGGG) repeats was 34.9%, 7.0%, 0.4%, 0.3%, and 0.2%, respectively. A total of 3607 non-redundant SSR primer pairs was designed based on the sequences of CDS, 5′-UTR and 3′-UTR region covering 34%, 14%, 23%, respectively. Among them, a sub set of primers (245 SSR) was validated using polymerase chain reaction (PCR) amplification, of which 167 primers gave expected PCR amplicon and 101 primers showed polymorphism. Each locus contained 2 to 12 alleles on average 0.82 PIC (polymorphic information content) value. A total of 87 lily accessions was subjected to genetic diversity analysis using polymorphic SSRs and found to separate into seven groups with 0.73 to 0.79 heterozygosity. Our data on large scale SSR based genetic diversity and population structure analysis may help to accelerate the breeding programs of lily through utilizing different genomes, understanding genetics and characterizing germplasm with efficient manner.


2020 ◽  
Author(s):  
Yufang Shen ◽  
Hui Xia ◽  
Zhonghua Tu ◽  
Yaxian Zong ◽  
Lichun Yang ◽  
...  

Abstract Background: Adaptive genetic differentiation is a hotspot in the research of speciation mechanisms in evolutionary biology. Genomic resources are important for detecting ecological adaptive evolution of non-model plants. Using RNA-seq for non-model plants is a good approach to obtain their genomic resources. The combination of population transcriptome resources and environmental data can provide insights into the genetic mechanism of adaptive genetic differentiation.Results: Based on the population transcriptome data, we investigated the spatial distribution of genetic variations in Liriodendron to detect relationships between ecological factors and genetic differentiation. Environmental data and genetic variations from 17 populations were integrated to detect the population structure, adaptive genes and key environmental factors that shape the population genetic structure by landscape genetic approach. Here, we identified 16592 high-quality single nucleotide polymorphisms (SNPs). The population structure analysis results showed that 17 populations were divided into three groups: L. tulipifera, eastern group and western group of L. chinense. Redundancy analysis and latent factor mixed model analysis suggested that precipitation seasonality, precipitation in the driest quarter, diurnal temperature, and solar radiation in May were closely associated with the adaptive genetic differentiation of Liriodendron. Ecological niche differentiation analysis implied significant ecological niche divergence between L. chinense and L. tulipifera habitats. In total, 858 environment-related loci were identified, which were associated with 464 genes. Pathway enrichment analysis revealed that these genes were significantly enriched in multiple biological pathways. Related studies confirmed that these biological pathways play vital roles in plant growth, development, stress, immune response and photosynthesis.Conclusions: Our research provided empirical evidence that environmental factors may play a key role in driving adaptive genetic differentiation of species. Furthermore, the combination of population transcriptome resources and environmental datasets provides new insights into the study of adaptive genetic differentiation of species.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1282
Author(s):  
Yu Wang ◽  
Zhongyi Jiao ◽  
Jiwei Zheng ◽  
Jie Zhou ◽  
Baosong Wang ◽  
...  

Chosenia arbutifolia (Pall.) A. Skv. is a unique and endangered species belonging to the Salicaceae family. It has great potential for ornamental and industrial use. However, human interference has led to a decrease in and fragmentation of its natural populations in the past two decades. To effectively evaluate, utilize, and conserve available resources, the genetic diversity and population structure of C. arbutifolia were analyzed in this study. A total of 142 individuals from ten provenances were sampled and sequenced. Moderate diversity was detected among these, with a mean expected heterozygosity and Shannon’s Wiener index of 0.3505 and 0.5258, respectively. The inbreeding coefficient was negative, indicating a significant excess of heterozygotes. The fixation index varied from 0.0068 to 0.3063, showing a varied genetic differentiation between populations. Analysis of molecular variance demonstrated that differentiation accounted for 82.23% of the total variation among individuals, while the remaining 17.77% variation was between populations. Furthermore, the results of population structure analysis indicated that the 142 individuals originated from three primitive groups. To provide genetic information and help design conservation and management strategies, landscape genomics analysis was performed by investigating loci associated with environmental variables. Eighteen SNP markers were associated with altitude and annual average temperature, of which five were ascribed with specific functions. In conclusion, the current study furthers the understanding of C. arbutifolia genetic architecture and provides insights for germplasm protection.


Author(s):  
Mónica Almanza Bernal ◽  
Edna J. Márquez ◽  
Luis Chasqui

The Caribbean sharpnose shark, Rhizoprionodon porosus is an important resource for artisanal small-scale fisheries. It is one of the most abundant coastal sharks within its distribution range, and plays an important role as a predator in coastal marine ecosystems. For its coastal habits, it is susceptible to intensive extraction, especially the juveniles. To accomplish proper management and conservation of exploited Rhizoprionodon populations, knowledge about its genetic diversity and its population structure within their distribution range is needed. The ability of heterologous primers developed for other requiem sharks to amplify microsatellite molecular markers in R. porosus was tested in this study (cross amplification). The change in allele frequency of four microsatellite loci served to assess the genetic structure of R. porosus in the Colombian Caribbean. Analysis of molecular variance Amova and population structure analysis using the Фst statistical of genotype frequencies indicate low but significant genetic differentiation among R. porosus from the departments analyzed (Фst (3,165) = 0.002; p = 0.000). Besides, the analysis of pairs of departments indicates that there is significant genetic differentiation among La Guajira and the other samples analyzed of the Antillean sharpnose shark (all p values = 0.000). The information obtained helps to understand the dynamics of natural populations of the Caribbean sharpnose shark, serving as a baseline for the formulation, development of conservation strategies and management of this fishery resource; however, due the low number of heterologous loci useful for population genetics studies, research efforts on the development of specific markers for the species should be done for further population genetic studies of this species.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Oumer Abdie Oumer ◽  
Kassahun Tesfaye ◽  
Tileye Feyissa ◽  
Dagnew Yibeyen ◽  
Jayaraman Durai ◽  
...  

Background. As a member of Poaceae and subfamily Bambusoideae, Ethiopian lowland bamboo (Oxytenanthera abyssinica) is one of the most important nontimber forest resources or a potential alternative to wood and wood products. Ethiopia contributes 86% of the total area of bamboo on the continent, Africa, and 7% of the world. O. abyssinica in Ethiopia accounts for 85% of the total national coverage of bamboo. Several studies have been performed on the genetic diversity and population structure analysis of various bamboo species throughout the world but almost nothing in Ethiopia and O. abyssinica. Methods. Young fresh leaves of O. abyssinica from thirteen natural lowland bamboo growing areas across the country were collected. DNA was isolated using a modified CTAB DNA isolation method. Three cpDNA gene sequences (matK, ndhF3, and rps16) were used for the study. PCR products were analyzed, purified, and pair-end sequenced to calculate AC/GC content, average number of nucleotide differences (k), nucleotide diversity (π) and population mutation rates per 100 sites ( θ w ), InDel (Insertion-Deletion), DNA divergence, gene flow, and genetic differentiation. Results. Metekel Zone was found to have extremely higher k, π, and θ w . Higher frequency of genetic differentiation was found between Metekel Zone vs. the distant populations. Higher frequency of gene flow was found between Assosa Zone vs. Oromia populations. Kurmuk haplotype from gaps or missing data considered and Bambasi haplotype from not considered has descendants around them. Conclusion. Using sequences of cpDNA genes, populations of O. abyssinica collected in Ethiopia show clear diversity based on their geographic location. Metekel Zone was found to have the most diverse population, Assosa Zone has been found to be the source of evolution of O. abyssinica, and Gambella population shows a difference from other O. abyssinica populations.


2021 ◽  
Author(s):  
◽  
Luke Thomas

<p>Understanding patterns of gene flow across a species range is a vital component of an effective fisheries management strategy. The advent of highly polymorphic microsatellite markers has facilitated the detection of fine-scale patterns of genetic differentiation at levels below the resolving power of earlier techniques. This has triggered the wide-spread re-examination of population structure for a number of commercially targeted species. The aims of thesis were to re-investigate patterns of gene flow of the red rock lobster Jasus edwardsii throughout New Zealand and across the Tasman Sea using novel microsatellite markers. Jasus edwardsii is a keystone species of subtidal rocky reef system and supports lucrative export markets in both Australia and New Zealand. Eight highly polymorphic microsatellite markers were developed from 454 sequence data and screened across a Wellington south coast population to obtain basic diversity indices. All loci were polymorphic with the number of alleles per locus ranging from 6-39. Observed and expected heterozygosity ranged from 0.563-0.937 and 0.583-0.961, respectively. There were no significant deviations from Hardy-Weinberg equilibrium following standard Bonferroni corrections. The loci were used in a population analysis of J. edwardsii that spanned 10 degrees of latitude and stretched 3,500 km across the South Pacific. The analysis rejected the null-hypothesis of panmixia based on earlier mDNA analysis and revealed significant population structure (FST=0.011, RST=0.028) at a wide range of scales. Stewart Island was determined to have the highest levels of genetic differentiation of all populations sampled suggesting a high degree of reproductive isolation and self-recruitment. This study also identified high levels of asymmetric gene flow from Australia to New Zealand indicating a historical source-sink relationship between the two countries. Results from the genetic analysis were consistent with results from oceanographic dispersal models and it is likely that the genetic results reflect historical and contemporary patterns of Jasus edwardsii dispersal and recruitment throughout its range.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247016
Author(s):  
Kefyalew Negisho ◽  
Surafel Shibru ◽  
Klaus Pillen ◽  
Frank Ordon ◽  
Gwendolin Wehner

Genetic diversity and population structure assessment in crops is essential for marker trait association, marker assisted breeding and crop germplasm conservation. We analyzed a set of 285 durum wheat accessions comprising 215 Ethiopian durum wheat landraces, 10 released durum wheat varieties, 10 advanced durum wheat lines from Ethiopia, and 50 durum wheat lines from CIMMYT. We investigated the genetic diversity and population structure for the complete panel as well as for the 215 landraces, separately based on 11,919 SNP markers with known physical positions. The whole panel was clustered into two populations representing on the one hand mainly the landraces, and on the other hand mainly released, advanced and CIMMYT lines. Further population structure analysis of the landraces uncovered 4 subgroups emphasizing the high degree of genetic diversity within Ethiopian durum landraces. Population structure based AMOVA for both sets unveiled significant (P < 0.001) variation between populations and within populations. Total variation within population accessions (81%, 76%) was higher than total variation between populations (19%, 24%) for both sets. Population structure analysis based genetic differentiation (FST) and gene flow (Nm) for the whole set and the Ethiopian landraces were 0.19 and 0.24, 1.04, and 0.81, respectively indicating high genetic differentiation and limited gene flow. Diversity indices verify that the landrace panel was more diverse with (I = 0.7, He = 0.46, uHe = 0.46) than the advanced lines (I = 0.6, He = 0.42, uHe = 0.42). Similarly, differences within the landrace clusters were observed. In summary a high genetic diversity within Ethiopian durum wheat landraces was detected, which may be a target for national and international wheat improvement programs to exploit valuable traits for biotic and abiotic stresses.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 397-407 ◽  
Author(s):  
François Rousset

Abstract We investigate the usefulness of analyses of population differentiation between different ecological types, such as host races of parasites or sources and sink habitats. To that aim, we formulate a model of population structure involving two classes of subpopulations found in sympatry. Extensions of previous results for Wright's F-statistics in island and isolation-by-distance models of dispersal are given. It is then shown that source and sinks cannot in general be distinguished by F-statistics nor by their gene diversities. The excess differentiation between two partially isolated classes with respect to differentiation within classes is shown to decrease with distance, and for a wide range of parameter values it should be difficult to detect. In the same circumstances little differentiation will be observed in “hierarchical analyses between pools of samples from each habitat, and differences between levels of differentiation within each habitat will only reflect differences between levels of gene diversity within each habitat. Exceptions will indicate strong isolation between the different classes or habitat-related divergent selection.


2022 ◽  
Vol 147 (1) ◽  
pp. 62-69
Author(s):  
Phillip A. Wadl ◽  
Timothy A. Rinehart ◽  
Richard T. Olsen ◽  
Benjamin D. Waldo ◽  
Joseph H. Kirkbride

The genus Chionanthus, known as fringetrees, is a member of the olive family (Oleaceae). Chionanthus virginicus is an understory tree or shrub with a wide range in forests of the eastern United States and is used as an ornamental tree that is known to be free of insects and disease in the wild. The species is tolerant of a wide range of environmental conditions, and there is interest in developing new cultivars with improved horticultural traits, such as tree form or upright growth habit and superior flowering display that are widely adapted. To identify genepools in the native range of C. virginicus for use in breeding programs, the genetic diversity and population structure were assessed for 274 individuals from 12 locations in four states (Florida, Maryland, North Carolina, and Texas) using 26 simple sequence repeats (SSRs). An average of 12.54 alleles/locus were detected, allelic richness averaged 2.80. Genetic differentiation was 0.11, indicating moderate differentiation among subpopulations. Despite the high genetic diversity and low population differentiation, Bayesian clustering analysis identified six genetic groups that match the geographic distribution of collection sites. Analysis of molecular variance indicated that most (82%) of the variation is explained within individuals, and 11% and 7% of the variation is due to differences among individuals within populations and among populations. Analysis of isolation by distance across all samples showed a weak positive relationship between geographic distance and genetic distance. The C. virginicus samples analyzed in this study indicate there is sufficient diversity for germplasm collection for use in breeding programs. Given the relatively moderate genetic differentiation, there are not likely to be unique islands of genetic diversity that may be missed when gathering parental materials for a breeding program


Sign in / Sign up

Export Citation Format

Share Document