scholarly journals EVALUACIÓN DE AMPLIFICACIÓN CRUZADA DE MICROSATÉLITES PARA ESTUDIOS DE GENÉTICA POBLACIONAL DEL CAZÓN ANTILLANO RHIZOPRIONODON POROSUS (CARCHARHINIDAE) EN EL CARIBE COLOMBIANO

Author(s):  
Mónica Almanza Bernal ◽  
Edna J. Márquez ◽  
Luis Chasqui

The Caribbean sharpnose shark, Rhizoprionodon porosus is an important resource for artisanal small-scale fisheries. It is one of the most abundant coastal sharks within its distribution range, and plays an important role as a predator in coastal marine ecosystems. For its coastal habits, it is susceptible to intensive extraction, especially the juveniles. To accomplish proper management and conservation of exploited Rhizoprionodon populations, knowledge about its genetic diversity and its population structure within their distribution range is needed. The ability of heterologous primers developed for other requiem sharks to amplify microsatellite molecular markers in R. porosus was tested in this study (cross amplification). The change in allele frequency of four microsatellite loci served to assess the genetic structure of R. porosus in the Colombian Caribbean. Analysis of molecular variance Amova and population structure analysis using the Фst statistical of genotype frequencies indicate low but significant genetic differentiation among R. porosus from the departments analyzed (Фst (3,165) = 0.002; p = 0.000). Besides, the analysis of pairs of departments indicates that there is significant genetic differentiation among La Guajira and the other samples analyzed of the Antillean sharpnose shark (all p values = 0.000). The information obtained helps to understand the dynamics of natural populations of the Caribbean sharpnose shark, serving as a baseline for the formulation, development of conservation strategies and management of this fishery resource; however, due the low number of heterologous loci useful for population genetics studies, research efforts on the development of specific markers for the species should be done for further population genetic studies of this species.

2020 ◽  
Author(s):  
Yufang Shen ◽  
Hui Xia ◽  
Zhonghua Tu ◽  
Yaxian Zong ◽  
Lichun Yang ◽  
...  

Abstract Background: Adaptive genetic differentiation is a hotspot in the research of speciation mechanisms in evolutionary biology. Genomic resources are important for detecting ecological adaptive evolution of non-model plants. Using RNA-seq for non-model plants is a good approach to obtain their genomic resources. The combination of population transcriptome resources and environmental data can provide insights into the genetic mechanism of adaptive genetic differentiation.Results: Based on the population transcriptome data, we investigated the spatial distribution of genetic variations in Liriodendron to detect relationships between ecological factors and genetic differentiation. Environmental data and genetic variations from 17 populations were integrated to detect the population structure, adaptive genes and key environmental factors that shape the population genetic structure by landscape genetic approach. Here, we identified 16592 high-quality single nucleotide polymorphisms (SNPs). The population structure analysis results showed that 17 populations were divided into three groups: L. tulipifera, eastern group and western group of L. chinense. Redundancy analysis and latent factor mixed model analysis suggested that precipitation seasonality, precipitation in the driest quarter, diurnal temperature, and solar radiation in May were closely associated with the adaptive genetic differentiation of Liriodendron. Ecological niche differentiation analysis implied significant ecological niche divergence between L. chinense and L. tulipifera habitats. In total, 858 environment-related loci were identified, which were associated with 464 genes. Pathway enrichment analysis revealed that these genes were significantly enriched in multiple biological pathways. Related studies confirmed that these biological pathways play vital roles in plant growth, development, stress, immune response and photosynthesis.Conclusions: Our research provided empirical evidence that environmental factors may play a key role in driving adaptive genetic differentiation of species. Furthermore, the combination of population transcriptome resources and environmental datasets provides new insights into the study of adaptive genetic differentiation of species.


2019 ◽  
Author(s):  
Shuichi Kitada ◽  
Hirohisa Kishino

AbstractThe number of individuals returning to Japan, the location of the world’s largest chum salmon hatchery program, has declined substantially over two decades. To find the genetic cause of this severe decline never previously experienced, we analyzed published genetic data sets for adult chum salmon, namely, 10 microsatellites, 53 single nucleotide polymorphisms (SNPs) and a combined mitochondrial DNA locus (mtDNA3), and three isozymes, from 576 locations in the distribution range (n = 76,363). The SNPs were selected for stock identification to achieve high accuracy, were highly differentiated in the distribution range and included important genes related to reproduction, growth and immune responses. By contrasting the genetic differentiation of these genes with the population structure estimated from the neutral microsatellite markers, we identified genes that distort the neutral population structure. We matched the sampling locations of SNPs and isozymes with those of microsatellites based on geographical information, and performed regression analyses of SNP and isozyme allele frequencies of matched locations on the population structure. TreeMix analysis indicated two admixture events, from Japan/Korea to Russia and the Alaskan Peninsula. Meta-analysis of allele frequencies identified three outliers, mtDNA3 (control region and NADH-3), GnRH373 (gonadotropin-releasing hormone) and U502241 (unknown), which showed enhanced differentiation in Japanese/Korean populations compared with the others. GnRH improves stream odor discrimination and has increased expression in adult chum salmon brains during homing migration, suggesting that the current admixture was caused by GnRH373 differentiation. mtDNA plays a key role in endurance exercise training, energy metabolism and oxygen consumption, suggesting that the significant reduction in mtDNA3 allele frequencies reduced aerobic athletic ability, as observed in YouTube videos. Our analyses relied on limited data sets, though they were the best available. Clearly, genome-wide data will be needed to fully address this issue.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Oumer Abdie Oumer ◽  
Kassahun Tesfaye ◽  
Tileye Feyissa ◽  
Dagnew Yibeyen ◽  
Jayaraman Durai ◽  
...  

Background. As a member of Poaceae and subfamily Bambusoideae, Ethiopian lowland bamboo (Oxytenanthera abyssinica) is one of the most important nontimber forest resources or a potential alternative to wood and wood products. Ethiopia contributes 86% of the total area of bamboo on the continent, Africa, and 7% of the world. O. abyssinica in Ethiopia accounts for 85% of the total national coverage of bamboo. Several studies have been performed on the genetic diversity and population structure analysis of various bamboo species throughout the world but almost nothing in Ethiopia and O. abyssinica. Methods. Young fresh leaves of O. abyssinica from thirteen natural lowland bamboo growing areas across the country were collected. DNA was isolated using a modified CTAB DNA isolation method. Three cpDNA gene sequences (matK, ndhF3, and rps16) were used for the study. PCR products were analyzed, purified, and pair-end sequenced to calculate AC/GC content, average number of nucleotide differences (k), nucleotide diversity (π) and population mutation rates per 100 sites ( θ w ), InDel (Insertion-Deletion), DNA divergence, gene flow, and genetic differentiation. Results. Metekel Zone was found to have extremely higher k, π, and θ w . Higher frequency of genetic differentiation was found between Metekel Zone vs. the distant populations. Higher frequency of gene flow was found between Assosa Zone vs. Oromia populations. Kurmuk haplotype from gaps or missing data considered and Bambasi haplotype from not considered has descendants around them. Conclusion. Using sequences of cpDNA genes, populations of O. abyssinica collected in Ethiopia show clear diversity based on their geographic location. Metekel Zone was found to have the most diverse population, Assosa Zone has been found to be the source of evolution of O. abyssinica, and Gambella population shows a difference from other O. abyssinica populations.


2016 ◽  
Author(s):  
Neo Christopher Chung ◽  
Joanna Szyda ◽  
Magdalena Fra̧szczak ◽  

AbstractSince domestication, population bottlenecks, breed formation, and selective breeding have radically shaped the genealogy and genetics of Bos taurus. In turn, characterization of population structure among globally diverse bull genomes enables detailed assessment of genetic resources and origins. By analyzing 432 unrelated bull genomes from 13 breeds and 16 countries, we demonstrate genetic diversity and structural complexity among the global bull population. Importantly, we relaxed a strong assumption of discrete or admixed population, by adapting latent variable models for individual-specific allele frequencies that directly capture a wide range of complex structure from genome-wide genotypes. We identified a highly complex population structure that defies the conventional hypothesis based on discrete membership and contributes to pervasive genetic differentiation in bull genomes. As measured by magnitude of differentiation, selection pressure on SNPs within genes is substantially greater than that on intergenic regions. Additionally, broad regions of chromosome 6 harboring largest genetic differentiation suggest positive selection underlying population structure. We carried out gene set analysis using SNP annotations to identify enriched functional categories such as energy-related processes and multiple development stages. Our comprehensive analysis of bull population structure can support genetic management strategies that capture structural complexity and promote sustainable genetic breadth.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247016
Author(s):  
Kefyalew Negisho ◽  
Surafel Shibru ◽  
Klaus Pillen ◽  
Frank Ordon ◽  
Gwendolin Wehner

Genetic diversity and population structure assessment in crops is essential for marker trait association, marker assisted breeding and crop germplasm conservation. We analyzed a set of 285 durum wheat accessions comprising 215 Ethiopian durum wheat landraces, 10 released durum wheat varieties, 10 advanced durum wheat lines from Ethiopia, and 50 durum wheat lines from CIMMYT. We investigated the genetic diversity and population structure for the complete panel as well as for the 215 landraces, separately based on 11,919 SNP markers with known physical positions. The whole panel was clustered into two populations representing on the one hand mainly the landraces, and on the other hand mainly released, advanced and CIMMYT lines. Further population structure analysis of the landraces uncovered 4 subgroups emphasizing the high degree of genetic diversity within Ethiopian durum landraces. Population structure based AMOVA for both sets unveiled significant (P < 0.001) variation between populations and within populations. Total variation within population accessions (81%, 76%) was higher than total variation between populations (19%, 24%) for both sets. Population structure analysis based genetic differentiation (FST) and gene flow (Nm) for the whole set and the Ethiopian landraces were 0.19 and 0.24, 1.04, and 0.81, respectively indicating high genetic differentiation and limited gene flow. Diversity indices verify that the landrace panel was more diverse with (I = 0.7, He = 0.46, uHe = 0.46) than the advanced lines (I = 0.6, He = 0.42, uHe = 0.42). Similarly, differences within the landrace clusters were observed. In summary a high genetic diversity within Ethiopian durum wheat landraces was detected, which may be a target for national and international wheat improvement programs to exploit valuable traits for biotic and abiotic stresses.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoting Xia ◽  
Shunjin Zhang ◽  
Huaju Zhang ◽  
Zijing Zhang ◽  
Ningbo Chen ◽  
...  

Abstract Background Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. Results The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). Conclusion We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


2021 ◽  
Vol 134 (5) ◽  
pp. 1343-1362
Author(s):  
Alex C. Ogbonna ◽  
Luciano Rogerio Braatz de Andrade ◽  
Lukas A. Mueller ◽  
Eder Jorge de Oliveira ◽  
Guillaume J. Bauchet

Abstract Key message Brazilian cassava diversity was characterized through population genetics and clustering approaches, highlighting contrasted genetic groups and spatial genetic differentiation. Abstract Cassava (Manihot esculenta Crantz) is a major staple root crop of the tropics, originating from the Amazonian region. In this study, 3354 cassava landraces and modern breeding lines from the Embrapa Cassava Germplasm Bank (CGB) were characterized. All individuals were subjected to genotyping-by-sequencing (GBS), identifying 27,045 single-nucleotide polymorphisms (SNPs). Identity-by-state and population structure analyses revealed a unique set of 1536 individuals and 10 distinct genetic groups with heterogeneous linkage disequilibrium (LD). On this basis, a density of 1300–4700 SNP markers were selected for large-effect quantitative trait loci (QTL) detection. Identified genetic groups were further characterized for population genetics parameters including minor allele frequency (MAF), observed heterozygosity $$({H}_{o})$$ ( H o ) , effective population size estimate $$\widehat{{(N}_{e}}$$ ( N e ^ ) and polymorphism information content (PIC). Selection footprints and introgressions of M. glaziovii were detected. Spatial population structure analysis revealed five ancestral populations related to distinct Brazilian ecoregions. Estimation of historical relationships among identified populations suggests an early population split from Amazonian to Atlantic forest and Caatinga ecoregions and active gene flows. This study provides a thorough genetic characterization of ex situ germplasm resources from cassava’s center of origin, South America, with results shedding light on Brazilian cassava characteristics and its biogeographical landscape. These findings support and facilitate the use of genetic resources in modern breeding programs including implementation of association mapping and genomic selection strategies.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Florentine Riquet ◽  
Aurélien Japaud ◽  
Flávia L. D. Nunes ◽  
Xaymara M. Serrano ◽  
Andrew C. Baker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document