scholarly journals Network analysis links genome-wide phenotypic and transcriptional stress responses in a bacterial pathogen with a large pan-genome

2016 ◽  
Author(s):  
Paul A. Jensen ◽  
Zeyu Zhu ◽  
Tim van Opijnen

ABSTRACTBackgroundBacteria modulate subcellular processes to handle stressful environments. Genome-wide profiling of gene expression (RNA-Seq) and fitness (Tn-Seq) allows two views of the same genetic network underlying these responses. However, it remains unclear how they combine, enabling a bacterium to overcome a perturbation.ResultsHere we generate RNA-Seq and Tn-Seq profiles in three strains of S. pneumoniae in response to stress defined by different levels of nutrient depletion. These profiles show that genes that change their expression and/or become phenotypically important come from a diverse set of functional categories, and genes that are phenotypically important tend to be highly expressed. Surprisingly, we find that expression and fitness changes rarely occur on the same gene, which we confirmed by over 140 validation experiments. To rationalize these unexpected results we built the first genome-scale metabolic model of S. pneumoniae showing that differential expression and phenotypic importance actually correlate between nearest neighbors, although they are distinctly partitioned into small subnetworks. Moreover, a meta-analysis of 234 S. pneumoniae gene expression studies reveals that essential genes and phenotypically important subnetworks rarely change expression, indicating that they are shielded from transcriptional fluctuations and that a clear distinction exists between transcriptional and phenotypic response networks.ConclusionsWe present a genome-wide computational/experimental approach that contextualizes changes that occur on transcriptomic and phenomic levels in response to stress. Importantly, this highlights the need to connect disparate response networks, for instance in antibiotic target identification, where preferred targets are phenotypically important genes that would be overlooked by transcriptomic analyses alone.

2020 ◽  
Author(s):  
Andrew D. Skol ◽  
Segun C. Jung ◽  
Ana Marija Sokovic ◽  
Siquan Chen ◽  
Sarah Fazal ◽  
...  

AbstractThe goal of the study was to identify genes whose aberrant expression can contribute to diabetic retinopathy. We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes (T1D) with and without retinopathy. Those genes exhibiting the largest difference in glucose response between individuals with diabetes with and without retinopathy were assessed for association to diabetic retinopathy utilizing genotype data from a genome-wide association study meta-analysis. All genetic variants associated with gene expression (expression Quantitative Trait Loci, eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified folliculin (FLCN) as a susceptibility gene for diabetic retinopathy. We show that expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy compared to individuals with diabetes without retinopathy. Three large, independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs to diabetic retinopathy. Mendelian randomization further confirmed a direct positive effect of increased FLCN expression on retinopathy in individuals with diabetes. Together, our studies integrating genetic association and gene expression implicate FLCN as a disease gene for diabetic retinopathy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ying Mao ◽  
Peng Huang ◽  
Yan Wang ◽  
Maiqiu Wang ◽  
Ming D. Li ◽  
...  

Abstract Background Smoking is a major causal risk factor for lung cancer, chronic obstructive pulmonary disease (COPD), cardiovascular disease (CVD), and is the main preventable cause of deaths in the world. The components of cigarette smoke are involved in immune and inflammatory processes, which may increase the prevalence of cigarette smoke-related diseases. However, the underlying molecular mechanisms linking smoking and diseases have not been well explored. This study was aimed to depict a global map of DNA methylation and gene expression changes induced by tobacco smoking and to explore the molecular mechanisms between smoking and human diseases through whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). Results We performed WGBS on 72 samples (36 smokers and 36 nonsmokers) and RNA-seq on 75 samples (38 smokers and 37 nonsmokers), and cytokine immunoassay on plasma from 22 males (9 smokers and 13 nonsmokers) who were recruited from the city of Jincheng in China. By comparing the data of the two groups, we discovered a genome-wide methylation landscape of differentially methylated regions (DMRs) associated with smoking. Functional enrichment analyses revealed that both smoking-related hyper-DMR genes (DMGs) and hypo-DMGs were related to synapse-related pathways, whereas the hypo-DMGs were specifically related to cancer and addiction. The differentially expressed genes (DEGs) revealed by RNA-seq analysis were significantly enriched in the “immunosuppression” pathway. Correlation analysis of DMRs with their corresponding gene expression showed that genes affected by tobacco smoking were mostly related to immune system diseases. Finally, by comparing cytokine concentrations between smokers and nonsmokers, we found that vascular endothelial growth factor (VEGF) was significantly upregulated in smokers. Conclusions In sum, we found that smoking-induced DMRs have different distribution patterns in hypermethylated and hypomethylated areas between smokers and nonsmokers. We further identified and verified smoking-related DMGs and DEGs through multi-omics integration analysis of DNA methylome and transcriptome data. These findings provide us a comprehensive genomic map of the molecular changes induced by smoking which would enhance our understanding of the harms of smoking and its relationship with diseases.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Andrew D Skol ◽  
Segun C Jung ◽  
Ana Marija Sokovic ◽  
Siquan Chen ◽  
Sarah Fazal ◽  
...  

We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes with and without retinopathy. Those genes exhibiting the largest difference in glucose response were assessed for association with diabetic retinopathy in a genome-wide association study meta-analysis. Expression quantitative trait loci (eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified folliculin (FLCN) as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy. Independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs with diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy. Integrating genetic association with gene expression implicated FLCN as a disease gene for diabetic retinopathy.


2009 ◽  
Vol 424 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Manuel Montero ◽  
Gustavo Eydallin ◽  
Alejandro M. Viale ◽  
Goizeder Almagro ◽  
Francisco J. Muñoz ◽  
...  

Using the Keio collection of gene-disrupted mutants of Escherichia coli, we have recently carried out a genome-wide screening of the genes affecting glycogen metabolism. Among the mutants identified in the study, ΔmgtA, ΔphoP and ΔphoQ cells, all lacking genes that are induced under low extracellular Mg2+ conditions, displayed glycogen-deficient phenotypes. In this work we show that these mutants accumulated normal glycogen levels when the culture medium was supplemented with submillimolar Mg2+ concentrations. Expression analyses conducted in wild-type, ΔphoP and ΔphoQ cells showed that the glgCAP operon is under PhoP-PhoQ control in the submillimolar Mg2+ concentration range. Subsequent screening of the Keio collection under non-limiting Mg2+ allowed the identification of 183 knock-out mutants with altered glycogen levels. The stringent and general stress responses, end-turnover of tRNA, intracellular AMP levels, and metabolism of amino acids, iron, carbon and sulfur were major determinants of glycogen levels. glgC::lacZY expression analyses using mutants representing different functional categories revealed that the glgCAP operon belongs to the RelA regulon. We propose an integrated metabolic model wherein glycogen metabolism is (a) tightly controlled by the energy and nutritional status of the cell and (b) finely regulated by changes in environmental Mg2+ occurring at the submillimolar concentration range.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Sandra Steyaert ◽  
Jolien Diddens ◽  
Jeroen Galle ◽  
Ellen De Meester ◽  
Sarah De Keulenaer ◽  
...  

Abstract Learning and memory formation are known to require dynamic CpG (de)methylation and gene expression changes. Here, we aimed at establishing a genome-wide DNA methylation map of the zebra finch genome, a model organism in neuroscience, as well as identifying putatively epigenetically regulated genes. RNA- and MethylCap-seq experiments were performed on two zebra finch cell lines in presence or absence of 5-aza-2′-deoxycytidine induced demethylation. First, the MethylCap-seq methodology was validated in zebra finch by comparison with RRBS-generated data. To assess the influence of (variable) methylation on gene expression, RNA-seq experiments were performed as well. Comparison of RNA-seq and MethylCap-seq results showed that at least 357 of the 3,457 AZA-upregulated genes are putatively regulated by methylation in the promoter region, for which a pathway analysis showed remarkable enrichment for neurological networks. A subset of genes was validated using Exon Arrays, quantitative RT-PCR and CpG pyrosequencing on bisulfite-treated samples. To our knowledge, this study provides the first genome-wide DNA methylation map of the zebra finch genome as well as a comprehensive set of genes of which transcription is under putative methylation control.


Sign in / Sign up

Export Citation Format

Share Document