scholarly journals Regulation of cancer epigenomes with a histone-binding synthetic transcription factor

2016 ◽  
Author(s):  
David B. Nyer ◽  
Daniel Vargas ◽  
Caroline Hom ◽  
Karmella A. Haynes

ABSTRACTChromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously we reported the first synthetic transcriptional activator, the "Polycomb-based transcription factor" (PcTF), that reads histone modifications through a protein-protein interaction between the PCD motif and trimethylated lysine 27 of histone H3 (H3K27me3). Here, we describe the genome-wide behavior of PcTF. Transcriptome and chromatin profiling revealed PcTF-sensitive promoter regions marked by proximal PcTF and distal H3K27me3 binding. These results illuminate a mechanism in which PcTF interactions bridge epigenetic marks with the transcription initiation complex. In three cancer-derived human cell lines tested here, many PcTF-sensitive genes encode developmental regulators and tumor suppressors. Thus, PcTF represents a powerful new fusion-protein-based method for cancer research and treatment where silencing marks are translated into direct gene activation.

1990 ◽  
Vol 10 (7) ◽  
pp. 3415-3420
Author(s):  
M W Van Dyke ◽  
M Sawadogo

The existence of separable functions within the human class II general transcription factor TFIID was probed for differential sensitivity to mild proteolytic treatment. Independent of whether TFIID was bound to DNA or free in solution, partial digestion with either one of a variety of nonspecific endoproteases generated a protease-resistant protein product that retained specific DNA recognition, as revealed by DNase I footprinting. However, in contrast to native TFIID, which interacts with the adenovirus major late (ML) promoter over a very broad DNA region, partially proteolyzed TFIID interacted with only a small region of the ML promoter immediately surrounding the TATA sequence. This novel footprint was very similar to that observed with the TATA factor purified from yeast cells. Partially proteolyzed human TFIID could form stable complexes that were resistant to challenge by exogenous templates. It could also nucleate the assembly of transcription complexes on the ML promoter with an efficiency comparable to that of native TFIID, yielding similar levels of transcription initiation. These results suggest a model in which the human TFIID protein is composed of at least two different regions or polypeptides: a protease-resistant "core," which by itself is sufficient for promoter recognition and basal transcriptional levels, and a protease-sensitive "tail," which interacts with downstream promoter regions and may be involved in regulatory processes.


1993 ◽  
Vol 13 (8) ◽  
pp. 4657-4669 ◽  
Author(s):  
C Wrighton ◽  
M Busslinger

We have established rat PC12 pheochromocytoma cell lines stably expressing the estrogen-activatable transcription factor FosER to identify genes that can be regulated by c-Fos in this neuronal cell type. Induction of ectopic c-Fos activity in PC12 cells increased the mRNA levels of the ornithine decarboxylase (ODC) and tyrosine hydroxylase genes with similar kinetics and to the same maximal level as nerve growth factor treatment. In both cases the rate of transcription initiation was increased. Induction of the ODC gene occurred even in the absence of protein synthesis, indicating direct regulation by FosER. ODC expression, however, was not induced by a mutant FosER protein containing a proline insertion in the basic region of the c-Fos moiety, demonstrating the requirement for a functional DNA-binding domain. These data show that FosER, and by extrapolation c-Fos, can directly activate transcription of the endogenous ODC gene in PC12 cells by binding to cis-regulatory sequences. Activation of the ODC gene was unexpectedly transient, as transcripts returned to the basal level after prolonged exposure of PC12 cells to FosER activity. Furthermore, ODC transcription was not at all induced by FosER in rat fibroblasts. To account for this cell-specific action of FosER, we propose that stimulation of the ODC gene by FosER requires either (i) cooperation with another transcription factor(s) or (ii) a specific pattern of modification which is present in PC12 cells but not in otherwise unstimulated fibroblasts. One or both of these mechanisms may be employed by cells to achieve selective gene activation in response to apparently stereotyped induction of c-fos.


2000 ◽  
Vol 20 (5) ◽  
pp. 1546-1552 ◽  
Author(s):  
Jean-Rene Cardinaux ◽  
John C. Notis ◽  
Qinghong Zhang ◽  
Ngan Vo ◽  
Johanna C. Craig ◽  
...  

ABSTRACT Phosphorylation of the transcription factor CREB leads to the recruitment of the coactivator, CREB binding protein (CBP). Recent studies have suggested that CBP recruitment is not sufficient for CREB function, however. We have identified a conserved protein-protein interaction motif within the CBP-binding domains of CREB and another transcription factor, SREBP (sterol-responsive element binding protein). In contrast to CREB, SREBP interacts with CBP in the absence of phosphorylation. We have exploited the conservation of this interaction motif to test whether CBP recruitment to CREB is sufficient for transcriptional activation. Substitution of six nonconserved amino acids from SREBP into the activation domain of CREB confers high-affinity, phosphorylation-independent CBP binding. The mutated CREB molecule, CREBDIEDML, activates transcription in F9 teratocarcinoma and PC12 cells even in the absence of protein kinase A (PKA). Addition of exogenous CBP augments the level of transcription mediated by CREBDIEDML, and adenovirus 12S E1A blocks transcription, implicating CBP in the activation process. Thus, recruitment of CBP to CREB is sufficient for transcriptional activation. Addition of PKA stimulates transcription induced by CREBDIEDML further, suggesting that a phosphorylation event downstream from CBP recruitment augments CREB signaling.


2020 ◽  
Vol 48 (11) ◽  
pp. 5953-5966
Author(s):  
Soonkap Kim ◽  
Sophie J M Piquerez ◽  
Juan S Ramirez-Prado ◽  
Emmanouil Mastorakis ◽  
Alaguraj Veluchamy ◽  
...  

Abstract The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5′ and 3′ ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5′ end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3′ ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5′ and 3′ ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions.


1990 ◽  
Vol 10 (7) ◽  
pp. 3415-3420 ◽  
Author(s):  
M W Van Dyke ◽  
M Sawadogo

The existence of separable functions within the human class II general transcription factor TFIID was probed for differential sensitivity to mild proteolytic treatment. Independent of whether TFIID was bound to DNA or free in solution, partial digestion with either one of a variety of nonspecific endoproteases generated a protease-resistant protein product that retained specific DNA recognition, as revealed by DNase I footprinting. However, in contrast to native TFIID, which interacts with the adenovirus major late (ML) promoter over a very broad DNA region, partially proteolyzed TFIID interacted with only a small region of the ML promoter immediately surrounding the TATA sequence. This novel footprint was very similar to that observed with the TATA factor purified from yeast cells. Partially proteolyzed human TFIID could form stable complexes that were resistant to challenge by exogenous templates. It could also nucleate the assembly of transcription complexes on the ML promoter with an efficiency comparable to that of native TFIID, yielding similar levels of transcription initiation. These results suggest a model in which the human TFIID protein is composed of at least two different regions or polypeptides: a protease-resistant "core," which by itself is sufficient for promoter recognition and basal transcriptional levels, and a protease-sensitive "tail," which interacts with downstream promoter regions and may be involved in regulatory processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dong Hee Kim ◽  
Kwang Kon Kim ◽  
Tae Hwan Lee ◽  
Hyejin Eom ◽  
Jin Woo Kim ◽  
...  

The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5’-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.


1993 ◽  
Vol 13 (8) ◽  
pp. 4657-4669
Author(s):  
C Wrighton ◽  
M Busslinger

We have established rat PC12 pheochromocytoma cell lines stably expressing the estrogen-activatable transcription factor FosER to identify genes that can be regulated by c-Fos in this neuronal cell type. Induction of ectopic c-Fos activity in PC12 cells increased the mRNA levels of the ornithine decarboxylase (ODC) and tyrosine hydroxylase genes with similar kinetics and to the same maximal level as nerve growth factor treatment. In both cases the rate of transcription initiation was increased. Induction of the ODC gene occurred even in the absence of protein synthesis, indicating direct regulation by FosER. ODC expression, however, was not induced by a mutant FosER protein containing a proline insertion in the basic region of the c-Fos moiety, demonstrating the requirement for a functional DNA-binding domain. These data show that FosER, and by extrapolation c-Fos, can directly activate transcription of the endogenous ODC gene in PC12 cells by binding to cis-regulatory sequences. Activation of the ODC gene was unexpectedly transient, as transcripts returned to the basal level after prolonged exposure of PC12 cells to FosER activity. Furthermore, ODC transcription was not at all induced by FosER in rat fibroblasts. To account for this cell-specific action of FosER, we propose that stimulation of the ODC gene by FosER requires either (i) cooperation with another transcription factor(s) or (ii) a specific pattern of modification which is present in PC12 cells but not in otherwise unstimulated fibroblasts. One or both of these mechanisms may be employed by cells to achieve selective gene activation in response to apparently stereotyped induction of c-fos.


2021 ◽  
Vol 8 ◽  
Author(s):  
Niko Linzer ◽  
Alexis Trumbull ◽  
Rukiye Nar ◽  
Matthew D. Gibbons ◽  
David T. Yu ◽  
...  

Transcription by RNA polymerase II (Pol II) is regulated by different processes, including alterations in chromatin structure, interactions between distal regulatory elements and promoters, formation of transcription domains enriched for Pol II and co-regulators, and mechanisms involved in the initiation, elongation, and termination steps of transcription. Transcription factor TFII-I, originally identified as an initiator (INR)-binding protein, contains multiple protein–protein interaction domains and plays diverse roles in the regulation of transcription. Genome-wide analysis revealed that TFII-I associates with expressed as well as repressed genes. Consistently, TFII-I interacts with co-regulators that either positively or negatively regulate the transcription. Furthermore, TFII-I has been shown to regulate transcription pausing by interacting with proteins that promote or inhibit the elongation step of transcription. Changes in TFII-I expression in humans are associated with neurological and immunological diseases as well as cancer. Furthermore, TFII-I is essential for the development of mice and represents a barrier for the induction of pluripotency. Here, we review the known functions of TFII-I related to the regulation of Pol II transcription at the stages of initiation and elongation.


Sign in / Sign up

Export Citation Format

Share Document