scholarly journals Bacterial but not protist gut microbiota align with ecological specialization in a set of lower termite species

2016 ◽  
Author(s):  
Lena Waidele ◽  
Judith Korb ◽  
Sven Küenzel ◽  
Franck Dedeine ◽  
Fabian Staubach

AbstractThe role of microbes in adaptation of higher organisms to the environment is becoming increasingly evident, but remains poorly understood. Protist and bacterial microbes facilitate that lower termites thrive on wood and are directly involved in substrate break down. During the course of evolution lower termites adapted to different diets and lifestyles. In order to test whether there are changes of the termite gut microbiota that co-occur and hence could be related to diet and lifestyle adaptation, we assessed the bacterial and protist communities in a multispecies framework profiling three wood-dwelling and two foraging lower termite species using 16S and 18S rRNA gene amplicon sequencing. Termites were kept under controlled conditions on the same diet to minimize environmental effects on their gut microbiota. We found that protist communities group according to host phylogeny while bacterial communities group according to lifestyle. The change from the ancestral wood-dwelling to a foraging lifestyle coincides with exposure to more diverse and higher concentrations of pathogens as well as a more diverse diet. Accordingly, we identified bacteria that are associated with foraging termites of the genus Reticulitermes and could function as probiotics or be metabolically important on a more diverse diet. Furthermore, protist and bacterial diversity are correlated, suggesting not only that many termite gut bacteria are associated with protists, but also suggesting a role of protist diversity in the evolution of bacterial diversity in the termite gut or vice versa.

Author(s):  
Vincent Hervé ◽  
Pengfei Liu ◽  
Carsten Dietrich ◽  
David Sillam-Dussès ◽  
Petr Stiblik ◽  
...  

“Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, e.g., Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.


2020 ◽  
Author(s):  
Zhihua Liu ◽  
Ting Liu ◽  
Chao Lei ◽  
Weiqi Song ◽  
Rong Fang ◽  
...  

Abstract Background: Hesperidin is a plant-derived dihydroflavone derivative with multiple pharmacological functions. Obesity is associated with low-grade chronic inflammation and intestinal dysbiosis. We examined the possibility that hesperidin may prevent diet-induced obesity by modulating the composition of the gut microbiota. High-fat diet (HFD)-fed mice were treated with hesperidin. Its effects on the gut microbiota were assessed by horizontal faecal microbiota transplantation (FMT) and 16S rRNA gene amplicon sequencing-based microbiota analysis. Results: Gut microbiota analysis revealed that hesperidin selectively promoted the growth of beneficial Lactobacillus salivarius and harmful Staphylococcus sciuri and Desulfovibrio C21_c20 and inhibited that of beneficial Bifidobacterium pseudolongum and Mucispirillumschaedleri and harmful Helicobacter ganmani and Helicobacter hepaticus . However, hesperidin reversed obesity and inflammation and improved gut integrity in HFD-fed mice. The anti-obesity effects and hesperidin-modulated Lactobacillus salivarius, Desulfovibrio C21_c20, Mucispirillumschaedleri and Helicobacter hepaticus were transmissible via horizontal faeces transfer from hesperidin-treated mice to HFD-fed mice. Conclusions: Hesperidin plays a dual role in both beneficial and harmful microbes. However, its overall effects reduce body weight and reverse HFD-related disorders in HFD-fed mice.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8614 ◽  
Author(s):  
Vincent Hervé ◽  
Pengfei Liu ◽  
Carsten Dietrich ◽  
David Sillam-Dussès ◽  
Petr Stiblik ◽  
...  

“Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, for example, Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.


2020 ◽  
Vol 125 (1) ◽  
pp. 50-61
Author(s):  
Tingting Ju ◽  
John P. Kennelly ◽  
René L. Jacobs ◽  
Benjamin P. Willing

AbstractDietary choline, which is converted to phosphatidylcholine (PC) in intestinal enterocytes, may benefit inflammatory bowel disease patients who typically have reduced intestinal choline and PC. The present study investigated the effect of dietary choline supplementation on colitis severity and intestinal mucosal homoeostasis using a Citrobacter rodentium-induced colitis model. C57BL/6J mice were fed three isoenergetic diets differing in choline level: choline-deficient (CD), choline-sufficient (CS) and choline-excess (CE) for 3 weeks prior to infection with C. rodentium. The effect of dietary choline levels on the gut microbiota was also characterised in the absence of infection using 16S rRNA gene amplicon sequencing. At 7 d following infection, the levels of C. rodentium in CD mice were significantly greater than that in CS or CE groups (P < 0·05). CD mice exhibited greater damage to the surface epithelium and goblet cell loss than the CS or CE mice, which was consistent with elevated pro-inflammatory cytokine and chemokine levels in the colon. In addition, CD group exhibited decreased concentrations of PC in the colon after C. rodentium infection, although the decrease was not observed in the absence of challenge. Select genera, including Allobaculum and Turicibacter, were enriched in response to dietary choline deficiency; however, there was minimal impact on the total bacterial abundance or the overall structure of the gut microbiota. Our results suggest that insufficient dietary choline intake aggravates the severity of colitis and demonstrates an essential role of choline in maintaining intestinal homoeostasis.


2019 ◽  
Author(s):  
Vincent Hervé ◽  
Pengfei Liu ◽  
Carsten Dietrich ◽  
David Sillam-Dussès ◽  
Petr Stiblik ◽  
...  

“Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, e.g., Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Ewa Sajnaga ◽  
Marcin Skowronek ◽  
Agnieszka Kalwasińska ◽  
Waldemar Kazimierczak ◽  
Karolina Ferenc ◽  
...  

This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lito E. Papanicolas ◽  
Sarah K. Sims ◽  
Steven L. Taylor ◽  
Sophie J. Miller ◽  
Christos S. Karapetis ◽  
...  

Abstract Background The gut microbiota influences many aspects of host physiology, including immune regulation, and is predictive of outcomes in cancer patients. However, whether conventional myelosuppressive chemotherapy affects the gut microbiota in humans with non-haematological malignancy, independent of antibiotic exposure, is unknown. Methods Faecal samples from 19 participants with non-haematological malignancy, who were receiving conventional chemotherapy regimens but not antibiotics, were examined prior to chemotherapy, 7–12 days after chemotherapy, and at the end of the first cycle of treatment. Gut microbiota diversity and composition was determined by 16S rRNA gene amplicon sequencing. Results Compared to pre-chemotherapy samples, samples collected 7–12 days following chemotherapy exhibited increased richness (mean 120 observed species ± SD 38 vs 134 ± 40; p = 0.007) and diversity (Shannon diversity: mean 6.4 ± 0.43 vs 6.6 ± 0.41; p = 0.02). Composition was significantly altered, with a significant decrease in the relative abundance of gram-positive bacteria in the phylum Firmicutes (pre-chemotherapy median relative abundance [IQR] 0.78 [0.11] vs 0.75 [0.11]; p = 0.003), and an increase in the relative abundance of gram-negative bacteria (Bacteroidetes: median [IQR] 0.16 [0.13] vs 0.21 [0.13]; p = 0.01 and Proteobacteria: 0.015 [0.018] vs 0.03 [0.03]; p = 0.02). Differences in microbiota characteristics from baseline were no longer significant at the end of the chemotherapy cycle. Conclusions Conventional chemotherapy results in significant changes in gut microbiota characteristics during the period of predicted myelosuppression post-chemotherapy. Further study is indicated to link microbiome changes during chemotherapy to clinical outcomes.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 482
Author(s):  
Jae-Kwon Jo ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Hyun-Woo Kim ◽  
Eun-Ju Kim ◽  
...  

Obesity can be caused by microbes producing metabolites; it is thus important to determine the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms. To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control group. The increased relative abundance of Firmicutes in the HFD group was positively correlated with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis. This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and may help to understand the mechanisms underlying obesity mediated by gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document