scholarly journals Cis-Compound Mutations are Prevalent in Triple Negative Breast Cancer and Can Drive Tumor Progression

2016 ◽  
Author(s):  
Nao Hiranuma ◽  
Jie Liu ◽  
Chaozhong Song ◽  
Jacob Goldsmith ◽  
Michael Dorschner ◽  
...  

About 16% of breast cancers fall into a clinically aggressive category designated triple negative (TNBC) due to a lack of ERBB2, estrogen receptor and progesterone receptor expression1-3. The mutational spectrum of TNBC has been characterized as part of The Cancer Genome Atlas (TCGA)4; however, snapshots of primary tumors cannot reveal the mechanisms by which TNBCs progress and spread. To address this limitation we initiated the Intensive Trial of OMics in Cancer (ITOMIC)-001, in which patients with metastatic TNBC undergo multiple biopsies over space and time5. Whole exome sequencing (WES) of 67 samples from 11 patients identified 426 genes containing multiple distinct single nucleotide variants (SNVs) within the same sample, instances we term Multiple SNVs affecting the Same Gene and Sample (MSSGS). We find that >90% of MSSGS result from cis-compound mutations (in which both SNVs affect the same allele), that MSSGS comprised of SNVs affecting adjacent nucleotides arise from single mutational events, and that most other MSSGS result from the sequential acquisition of SNVs. Some MSSGS drive cancer progression, as exemplified by a TNBC driven by FGFR2(S252W;Y375C). MSSGS are more prevalent in TNBC than other breast cancer subtypes and occur at higher-than-expected frequencies across TNBC samples within TCGA. MSSGS may denote genes that play as yet unrecognized roles in cancer progression.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ovidiu Balacescu ◽  
Loredana Balacescu ◽  
Oana Virtic ◽  
Simona Visan ◽  
Claudia Gherman ◽  
...  

Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2− breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of “chemokine signaling,” “IL-8 signaling,” and “communication between innate and adaptive immune cells” pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients.



2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Jonathan D. Marotti ◽  
Kristen E. Muller ◽  
Laura J. Tafe ◽  
Eugene Demidenko ◽  
Todd W. Miller

Background. Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-Rex1) has been implicated in cancer growth, metastasis, and response to phosphatidylinositol 3-kinase (PI3K) inhibitor therapy. The aim of this study was to determine whether P-Rex1 expression differs between primary and metastatic human breast tumors and between breast cancer subtypes. Design. P-Rex1 expression was measured in 133 specimens by immunohistochemistry: 40 and 42 primary breast tumors from patients who did versus did not develop metastasis, respectively, and 51 breast-derived tumors from metastatic sites (36 of which had matching primary tumors available for analysis). Results. Primary breast tumors showed significant differences in P-Rex1 expression based on receptor subtype. ER+ and HER2+ primary tumors showed higher P-Rex1 expression than primary triple-negative tumors. HER2+ metastases from all sites showed significantly higher P-Rex1 expression compared to other metastatic receptor subtypes. Solid organ (i.e., brain, lung, and liver) metastases showed higher P-Rex1 expression compared to bone metastases. Conclusions. P-Rex1 expression is increased in ER+ and HER2+ breast cancers compared to triple-negative tumors. P-Rex1 may be differentially expressed in metastatic tumors based on site and receptor status. The role of P-Rex1 in the development of breast cancer metastases and as a predictive biomarker of therapeutic response warrants further investigation.



Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4139
Author(s):  
Pere Llinàs-Arias ◽  
Sandra Íñiguez-Muñoz ◽  
Kelly McCann ◽  
Leonie Voorwerk ◽  
Javier I. J. Orozco ◽  
...  

Triple-negative breast cancer (TNBC) is defined by the absence of estrogen receptor and progesterone receptor and human epidermal growth factor receptor 2 (HER2) overexpression. This malignancy, representing 15–20% of breast cancers, is a clinical challenge due to the lack of targeted treatments, higher intrinsic aggressiveness, and worse outcomes than other breast cancer subtypes. Immune checkpoint inhibitors have shown promising efficacy for early-stage and advanced TNBC, but this seems limited to a subgroup of patients. Understanding the underlying mechanisms that determine immunotherapy efficiency is essential to identifying which TNBC patients will respond to immunotherapy-based treatments and help to develop new therapeutic strategies. Emerging evidence supports that epigenetic alterations, including aberrant chromatin architecture conformation and the modulation of gene regulatory elements, are critical mechanisms for immune escape. These alterations are particularly interesting since they can be reverted through the inhibition of epigenetic regulators. For that reason, several recent studies suggest that the combination of epigenetic drugs and immunotherapeutic agents can boost anticancer immune responses. In this review, we focused on the contribution of epigenetics to the crosstalk between immune and cancer cells, its relevance on immunotherapy response in TNBC, and the potential benefits of combined treatments.



2019 ◽  
Vol 26 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Eva Baxter ◽  
Karolina Windloch ◽  
Greg Kelly ◽  
Jason S Lee ◽  
Frank Gannon ◽  
...  

Up to 80% of endometrial and breast cancers express oestrogen receptor alpha (ERα). Unlike breast cancer, anti-oestrogen therapy has had limited success in endometrial cancer, raising the possibility that oestrogen has different effects in both cancers. We investigated the role of oestrogen in endometrial and breast cancers using data from The Cancer Genome Atlas (TCGA) in conjunction with cell line studies. Using phosphorylation of ERα (ERα-pSer118) as a marker of transcriptional activation of ERα in TCGA datasets, we found that genes associated with ERα-pSer118 were predominantly unique between tumour types and have distinct regulators. We present data on the alternative and novel roles played by SMAD3, CREB-pSer133 and particularly XBP1 in oestrogen signalling in endometrial and breast cancer.



Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 763 ◽  
Author(s):  
Justin M Brown ◽  
Marie-Claire D Wasson ◽  
Paola Marcato

Treatment decisions for breast cancer are based on staging and hormone receptor expression and include chemotherapies and endocrine therapy. While effective in many cases, some breast cancers are resistant to therapy, metastasize and recur, leading to eventual death. Higher percentages of tumor-initiating cancer stem cells (CSCs) may contribute to the increased aggressiveness, chemoresistance, and worse outcomes among breast cancer. This may be particularly true in triple-negative breast cancers (TNBCs) which have higher percentages of CSCs and are associated with worse outcomes. In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified as playing an important role in breast cancer progression and some of these have been specifically associated within the CSC populations of breast cancers. LncRNAs are non-protein-coding transcripts greater than 200 nucleotides which can have critical functions in gene expression regulation. The preclinical evidence regarding lncRNA antagonists for the treatment of cancer is promising and therefore, presents a potential novel approach for treating breast cancer and targeting therapy-resistant CSCs within these tumors. Herein, we summarize the lncRNAs that have been identified as functionally relevant in breast CSCs. Furthermore, our review of the literature and analysis of patient datasets has revealed that many of these breast CSC-associated lncRNAs are also enriched in TNBC. Together, this suggests that these lncRNAs may be playing a particularly important role in TNBC. Thus, certain breast cancer-promoting/CSC-associated lncRNAs could be targeted in the treatment of TNBCs and the CSCs within these tumors should be susceptible to anti-lncRNA therapy.



2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xiao-Xiao Li ◽  
Li-Juan Wang ◽  
Jie Hou ◽  
Hong-Yang Liu ◽  
Rui Wang ◽  
...  

Breast cancer is the most common cancer observed in adult females, worldwide. Due to the heterogeneity and varied molecular subtypes of breast cancer, the molecular mechanisms underlying carcinogenesis in different subtypes of breast cancer are distinct. Recently, long noncoding RNAs (lncRNAs) have been shown to be oncogenic or play important roles in cancer suppression and are used as biomarkers for diagnosis and therapy. In this study, we identified 134 lncRNAs and 6,414 coding genes were differentially expressed in triple-negative (TN), human epidermal growth factor receptor 2- (HER2-) positive, luminal A-positive, and luminal B-positive breast cancer. Of these, 37 lncRNAs were found to be dysregulated in all four subtypes of breast cancers. Subtypes of breast cancer special modules and lncRNA-mRNA interaction networks were constructed through weighted gene coexpression network analysis (WGCNA). Survival analysis of another public datasets was used to verify the identified lncRNAs exhibiting potential indicative roles in TN prognosis. Results from heat map analysis of the identified lncRNAs revealed that five blocks were significantly displayed. High expressions of lncRNAs, including LINC00911, CSMD2-AS1, LINC01192, SNHG19, DSCAM-AS1, PCAT4, ACVR28-AS1, and CNTFR-AS1, and low expressions of THAP9-AS1, MALAT1, TUG1, CAHM, FAM2011, NNT-AS1, COX10-AS1, and RPARP-AS1 were associated with low survival possibility in TN breast cancers. This study provides novel lncRNAs as potential biomarkers for the therapeutic and prognostic classification of different breast cancer subtypes.



2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 1070-1070
Author(s):  
Beom Seok Ko ◽  
Hee Jeong Kim ◽  
Jong Han Yu ◽  
jong Won Lee ◽  
Byung Ho Sohn ◽  
...  

1070 Background: Triple negative breast cancer (TNBC) often grows rapidly and has poor prognosis, with a high recurrence rate. Because conventional endocrine treatment and HER2 targeted therapy for TNBC is invalid, chemotherapy is the only systemic treatment for TNBC. It is known that several subtypes within the TNBC show different responses to chemotherapy, depending on the subtypes. Recently, a claudin (CLDN) low breast cancer has been identified, exhibiting low expressions of CLDNs 1, 3, 4 and 7. CLDNs are transmembrane proteins that seal tight junctions and are critical for maintaining cell-to-cell adhesion in epithelial cell sheets. However, their role in cancer progression remains largely unexplored. Methods: Surgically removed, formalin-fixed, paraffin-embedded breast cancers from 341 TNBC patients were analyzed to identify CLDN expression.They underwent wide local excision or mastectomy between March, 2004 and December, 2007 at the breast surgery unit of Asan Medical Central Hospital. Results: In our tumor series, we found 45.0% (153/339) of high expressing cases for CLDN1, 57.0% (192/337) for CLDN3, 57.6% (194/337) for CLDN4 and 44.0% (149/339) for CLDN7. Overall, we found 20.5% (70/341) of cases were within the low CLDN expression group and 79.5% (271/341) of tumors were within the high expression group of CLDN1, 3, 4 ,7. Although the high CLDN expression group was significantly associated with positive lymph node status and higher stage, there were no significant differences between CLDN low and high groups in disease free survival (p=0.477) or overall survival (p=0.253). Conclusions: CLDN high tumors are associated with poor prognosis features, but they are not an independent prognostic factor in TNBC patients. However, the mechanisms underlying the different roles of CLDNs in tumorigenesis are largely unclear. Studying the associations of these CLDNs with the TNBC subgroup of breast cancers might provide us with potential diagnostic biomarkers or therapeutic targets for cancer cells.



2013 ◽  
Vol 7 ◽  
pp. BCBCR.S10701 ◽  
Author(s):  
Kristiina Joensuu ◽  
Marjut Leidenius ◽  
Mia Kero ◽  
Leif C. Andersson ◽  
Kathryn B. Horwitz ◽  
...  

Breast cancer can recur even decades after the primary therapy. Markers are needed to predict cancer progression and the risk of late recurrence. The estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), proliferation marker Ki-67, and cytokeratin CK5 were studied to find out whether their expression or occurrence in subgroups of breast cancers correlated with the time of recurrence. The expression of HER2, ER, PR, Ki-67, and CK5 was studied by IHC in 72 primary breast cancers and their corresponding recurrent/metastatic lesions. The patients were divided into three groups according to the time of the recurrence/metastasis: before two years, after 5 years, and after 10 years. Based on their IHC profiles, the tumors were divided into surrogates of the genetically defined subgroups of breast cancers and the subtype definitions were as follows: luminal A (ER or PR+HER2–), luminal B (ER or PR+HER2+), HER2 overexpressing (ER–PR–HER2+), triple-negative (ER–PR–HER2–), basal-like (ER–PR–HER2–CK5+), non-classified (ER–PR–HER2–CK5–) and luminobasal (ER or PR+CK5+). In multivariate analysis, tumor size and HER2 positivity were a significant risk of early cancer relapse. The metastases showed a significantly lower CK5 expression. CK5 positivity distinguished triple negative tumors into rapidly and slowly recurring cancers. The IHC subtype ER or PR+HER2– luminal A presented a significantly lower risk of early tumor recurrence. Ki-67 expression denoted early-relapsing tumors and correlated linearly with tumor progression, since Ki-67 positivity declined gradually from early-relapsing toward late-recurring cancers.



Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2641
Author(s):  
Chun-Chao Wang

Breast cancers display dynamic reprogrammed metabolic activities as cancers develop from premalignant lesions to primary tumors, and then metastasize. Numerous advances focus on how tumors develop pro-proliferative metabolic signaling that differs them from adjacent, non-transformed epithelial tissues. This leads to targetable oncogene-driven liabilities among breast cancer subtypes. Other advances demonstrate how microenvironments trigger stress-response at single-cell resolution. Microenvironmental heterogeneities give rise to cell regulatory states in cancer cell spheroids in three-dimensional cultures and at stratified terminal end buds during mammary gland morphogenesis, where stress and survival signaling juxtapose. The cell-state specificity in stress signaling networks recapture metabolic evolution during cancer progression. Understanding lineage-specific metabolic phenotypes in experimental models is useful for gaining a deeper understanding of subtype-selective breast cancer metabolism.



Sign in / Sign up

Export Citation Format

Share Document