scholarly journals Global-scale structure of the eelgrass microbiome

2016 ◽  
Author(s):  
Ashkaan K Fahimipour ◽  
Melissa R Kardish ◽  
Jonathan A Eisen ◽  
Jenna M Lang ◽  
Jessica L Green ◽  
...  

AbstractPlant-associated microorganisms are essential for their hosts' survival and performance. Yet, most plant microbiome studies to date have focused on terrestrial plant species sampled across relatively small spatial scales. Here we report results of a global-scale analysis of microbial communities associated with leaf and root surfaces of the marine eelgrassZostera marinathroughout its range in the Northern Hemisphere. By contrasting host microbiomes with those of their surrounding seawater and sediment communities, we uncovered the structure, composition and variability of microbial communities associated withZ. marina. We also investigated hypotheses about the mechanisms driving assembly of the eelgrass microbiome using a whole-genomic metabolic modeling approach. Our results reveal aboveground leaf communities displaying high variability and spatial turnover, that strongly mirror their adjacent coastal seawater microbiomes. In contrast, roots showed relatively low spatial turnover and were compositionally distinct from surrounding sediment communities — a result largely driven by the enrichment of predicted sulfur-oxidizing bacterial taxa on root surfaces. Metabolic modeling of enriched taxa was consistent with an assembly process whereby similarity in resource use drives taxonomic co-occurrence patterns on belowground, but not aboveground, host tissues. Our work provides evidence for a coreZ. marinaroot microbiome with putative functional roles and highlights potentially disparate processes influencing microbiome assembly on different plant compartments.

2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Ashkaan K. Fahimipour ◽  
Melissa R. Kardish ◽  
Jenna M. Lang ◽  
Jessica L. Green ◽  
Jonathan A. Eisen ◽  
...  

ABSTRACT Plant-associated microorganisms are essential for their hosts' survival and performance. Yet, most plant microbiome studies to date have focused on terrestrial species sampled across relatively small spatial scales. Here, we report the results of a global-scale analysis of microbial communities associated with leaf and root surfaces of the marine eelgrass Zostera marina throughout its range in the Northern Hemisphere. By contrasting host microbiomes with those of surrounding seawater and sediment, we uncovered the structure, composition, and variability of microbial communities associated with eelgrass. We also investigated hypotheses about the assembly of the eelgrass microbiome using a metabolic modeling approach. Our results reveal leaf communities displaying high variability and spatial turnover that mirror their adjacent coastal seawater microbiomes. By contrast, roots showed relatively low compositional turnover and were distinct from surrounding sediment communities, a result driven by the enrichment of predicted sulfur-oxidizing bacterial taxa on root surfaces. Predictions from metabolic modeling of enriched taxa were consistent with a habitat-filtering community assembly mechanism whereby similarity in resource use drives taxonomic cooccurrence patterns on belowground, but not aboveground, host tissues. Our work provides evidence for a core eelgrass root microbiome with putative functional roles and highlights potentially disparate processes influencing microbial community assembly on different plant compartments. IMPORTANCE Plants depend critically on their associated microbiome, yet the structure of microbial communities found on marine plants remains poorly understood in comparison to that for terrestrial species. Seagrasses are the only flowering plants that live entirely in marine environments. The return of terrestrial seagrass ancestors to oceans is among the most extreme habitat shifts documented in plants, making them an ideal testbed for the study of microbial symbioses with plants that experience relatively harsh abiotic conditions. In this study, we report the results of a global sampling effort to extensively characterize the structure of microbial communities associated with the widespread seagrass species Zostera marina, or eelgrass, across its geographic range. Our results reveal major differences in the structure and composition of above- versus belowground microbial communities on eelgrass surfaces, as well as their relationships with the environment and host.


Larvae of many marine invertebrates must capture and ingest particulate food in order to develop to metamorphosis. These larvae use only a few physical processes to capture particles, but implement these processes using diverse morphologies and behaviors. Detailed understanding of larval feeding mechanism permits investigators to make predictions about feeding performance, including the size spectrum of particles larvae can capture and the rates at which they can capture them. In nature, larvae are immersed in complex mixtures of edible particles of varying size, density, flavor, and nutritional quality, as well as many particles that are too large to ingest. Concentrations of all of these components vary on fine temporal and spatial scales. Mechanistic models linking larval feeding mechanism to performance can be combined with data on food availability in nature and integrated into broader bioenergetics models to yield increased understanding of the biology of larvae in complex natural habitats.


2021 ◽  
Vol 13 (12) ◽  
pp. 2355
Author(s):  
Linglin Zeng ◽  
Yuchao Hu ◽  
Rui Wang ◽  
Xiang Zhang ◽  
Guozhang Peng ◽  
...  

Air temperature (Ta) is a required input in a wide range of applications, e.g., agriculture. Land Surface Temperature (LST) products from Moderate Resolution Imaging Spectroradiometer (MODIS) are widely used to estimate Ta. Previous studies of these products in Ta estimation, however, were generally applied in small areas and with a small number of meteorological stations. This study designed both temporal and spatial experiments to estimate 8-day and daily maximum and minimum Ta (Tmax and Tmin) on three spatial scales: climate zone, continental and global scales from 2009 to 2018, using the Random Forest (RF) method based on MODIS LST products and other auxiliary data. Factors contributing to the relation between LST and Ta were determined based on physical models and equations. Temporal and spatial experiments were defined by the rules of dividing the training and validation datasets for the RF method, in which the stations selected in the training dataset were all included or not in the validation dataset. The RF model was first trained and validated on each spatial scale, respectively. On a global scale, model accuracy with a determination coefficient (R2) > 0.96 and root mean square error (RMSE) < 1.96 °C and R2 > 0.95 and RMSE < 2.55 °C was achieved for 8-day and daily Ta estimations, respectively, in both temporal and spatial experiments. Then the model was trained and cross-validated on each spatial scale. The results showed that the data size and station distribution of the study area were the main factors influencing the model performance at different spatial scales. Finally, the spatial patterns of the model performance and variable importance were analyzed. Both daytime and nighttime LST had a significant contribution in the 8-day Tmax estimation on all the three spatial scales; while their contribution in daily Tmax estimation varied over different continents or climate zones. This study was expected to improve our understanding of Ta estimation in terms of accuracy variations and influencing variables on different spatial and temporal scales. The future work mainly includes identifying underlying mechanisms of estimation errors and the uncertainty sources of Ta estimation from a local to a global scale.


2020 ◽  
Vol 401 (12) ◽  
pp. 1365-1374
Author(s):  
Daniel K.H. Rode ◽  
Praveen K. Singh ◽  
Knut Drescher

AbstractBiofilms are a ubiquitous mode of microbial life and display an increased tolerance to different stresses. Inside biofilms, cells may experience both externally applied stresses and internal stresses that emerge as a result of growth in spatially structured communities. In this review, we discuss the spatial scales of different stresses in the context of biofilms, and if cells in biofilms respond to these stresses as a collection of individual cells, or if there are multicellular properties associated with the response. Understanding the organizational level of stress responses in microbial communities can help to clarify multicellular functions of biofilms.


Behaviour ◽  
1976 ◽  
Vol 56 (3-4) ◽  
pp. 286-297 ◽  
Author(s):  
David B. Adams

AbstractThe temporal sequences of acts and postures of rats during tests for isolation-induced fighting were recorded and analyzed. Scent-marking and olfactory investigation, which have been related to fighting by previous studies, were particularly emphasized. From the data a model was constructed for the sequence of behaviors which lead to and maintain isolation-induced fighting. The typical sequence begins with olfactory investigation and scent-marking; the home rat initially investigates the intruder, and the intruder initially investigates the cage. The combination of olfactory perception of a strange male and a familiar environment, it was suggested, serves to trigger an offensive mechanism in the home rat which leads to bite-and-kick attack and offensive sideways posture. The pain of the attack then triggers defensive mechanism in the intruder rat which leads to defensive upright posture and submissive posture. Whereas the functional role of the bite-and-kick attack appears to be simply the infliction of pain and elicitation of defense in the intruder, the function of offensive sideways posture as a threat behavior may be more complex. It is possible that it becomes a conditioned pain stimulus due to its close temporal pairing with bite-and-kick attack, but it is more likely that it produces defense by a process of sensitization. In any case, following the initial attack, the offensive sideways posture continues to elicit defensive behavior by the intruder even when there are no further attacks. The functional roles of the defensive postures were interpreted as positioning the intruder in such a way that the home rat cannot assume the aggressive posture from which attack is launched. Scent-marking behavior was consistent within strains, within individuals, and across different types of measures (accumulation of scent-marking marking material and performance of the stereotyped scent-marking act, crawl-over-dish). Amount of scent-marking was not correlated with attack, however, and its role in isolation-induced fighting remains unclear. In parallel to findings in other rodents, it was observed that scent-marking was diminished in animals after they had been subjected to attack.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Pengshuo Yang ◽  
Chongyang Tan ◽  
Maozhen Han ◽  
Lin Cheng ◽  
Xuefeng Cui ◽  
...  

Abstract Mainstream studies of microbial community focused on critical organisms and their physiology. Recent advances in large-scale metagenome analysis projects initiated new researches in the complex correlations between large microbial communities. Specifically, previous studies focused on the nodes (i.e. species) of the Species-Centric Networks (SCNs). However, little was understood about the change of correlation between network members (i.e. edges of the SCNs) when the network was disturbed. Here, we introduced a Correlation-Centric Network (CCN) to the microbial research based on the concept of edge networks. In CCN, each node represented a species–species correlation, and edge represented the species shared by two correlations. In this research, we investigated the CCNs and their corresponding SCNs on two large cohorts of microbiome. The results showed that CCNs not only retained the characteristics of SCNs, but also contained information that cannot be detected by SCNs. In addition, when the members of microbial communities were decreased (i.e. environmental disturbance), the CCNs fluctuated within a small range in terms of network connectivity. Therefore, by highlighting the important species correlations, CCNs could unveil new insights when studying not only the functions of target species, but also the stabilities of their residing microbial communities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Grace Tzun-Wen Shaw ◽  
An-Chi Liu ◽  
Chieh-Yin Weng ◽  
Yi-Chun Chen ◽  
Cheng-Yu Chen ◽  
...  

Abstract Over the past decades, one main issue that has emerged in ecological and environmental research is how losses in biodiversity influence ecosystem dynamics and functioning, and consequently human society. Although biodiversity is a common indicator of ecosystem functioning, it is difficult to measure biodiversity in microbial communities exposed to subtle or chronic environmental perturbations. Consequently, there is a need for alternative bioindicators to detect, measure, and monitor gradual changes in microbial communities against these slight, chronic, and continuous perturbations. In this study, microbial networks before and after subtle perturbations by adding S. acidaminiphila showed diverse topological niches and 4-node motifs in which microbes with co-occurrence patterns played the central roles in regulating and adjusting the intertwined relationships among microorganisms in response to the subtle environmental changes. This study demonstrates that microbial networks are a good bioindicator for chronic perturbation and should be applied in a variety of ecological investigations.


2021 ◽  
Vol 8 (9) ◽  
pp. 210035
Author(s):  
Amy A. Briggs ◽  
Anya L. Brown ◽  
Craig W. Osenberg

Microbes influence ecological processes, including the dynamics and health of macro-organisms and their interactions with other species. In coral reefs, microbes mediate negative effects of algae on corals when corals are in contact with algae. However, it is unknown whether these effects extend to larger spatial scales, such as at sites with high algal densities. We investigated how local algal contact and site-level macroalgal cover influenced coral microbial communities in a field study at two islands in French Polynesia, Mo'orea and Mangareva. At 5 sites at each island, we sampled prokaryotic microbial communities (microbiomes) associated with corals, macroalgae, turf algae and water, with coral samples taken from individuals that were isolated from or in contact with turf or macroalgae. Algal contact and macroalgal cover had antagonistic effects on coral microbiome alpha and beta diversity. Additionally, coral microbiomes shifted and became more similar to macroalgal microbiomes at sites with high macroalgal cover and with algal contact, although the microbial taxa that changed varied by island. Our results indicate that coral microbiomes can be affected by algae outside of the coral's immediate vicinity, and local- and site-level effects of algae can obscure each other's effects when both scales are not considered.


Sign in / Sign up

Export Citation Format

Share Document