scholarly journals 8-Day and Daily Maximum and Minimum Air Temperature Estimation via Machine Learning Method on a Climate Zone to Global Scale

2021 ◽  
Vol 13 (12) ◽  
pp. 2355
Author(s):  
Linglin Zeng ◽  
Yuchao Hu ◽  
Rui Wang ◽  
Xiang Zhang ◽  
Guozhang Peng ◽  
...  

Air temperature (Ta) is a required input in a wide range of applications, e.g., agriculture. Land Surface Temperature (LST) products from Moderate Resolution Imaging Spectroradiometer (MODIS) are widely used to estimate Ta. Previous studies of these products in Ta estimation, however, were generally applied in small areas and with a small number of meteorological stations. This study designed both temporal and spatial experiments to estimate 8-day and daily maximum and minimum Ta (Tmax and Tmin) on three spatial scales: climate zone, continental and global scales from 2009 to 2018, using the Random Forest (RF) method based on MODIS LST products and other auxiliary data. Factors contributing to the relation between LST and Ta were determined based on physical models and equations. Temporal and spatial experiments were defined by the rules of dividing the training and validation datasets for the RF method, in which the stations selected in the training dataset were all included or not in the validation dataset. The RF model was first trained and validated on each spatial scale, respectively. On a global scale, model accuracy with a determination coefficient (R2) > 0.96 and root mean square error (RMSE) < 1.96 °C and R2 > 0.95 and RMSE < 2.55 °C was achieved for 8-day and daily Ta estimations, respectively, in both temporal and spatial experiments. Then the model was trained and cross-validated on each spatial scale. The results showed that the data size and station distribution of the study area were the main factors influencing the model performance at different spatial scales. Finally, the spatial patterns of the model performance and variable importance were analyzed. Both daytime and nighttime LST had a significant contribution in the 8-day Tmax estimation on all the three spatial scales; while their contribution in daily Tmax estimation varied over different continents or climate zones. This study was expected to improve our understanding of Ta estimation in terms of accuracy variations and influencing variables on different spatial and temporal scales. The future work mainly includes identifying underlying mechanisms of estimation errors and the uncertainty sources of Ta estimation from a local to a global scale.

Author(s):  
Chunli Zhao ◽  
Jianguo Chen ◽  
Peng Du ◽  
Hongyong Yuan

It has been demonstrated that climate change is an established fact. A good comprehension of climate and extreme weather variation characteristics on a temporal and a spatial scale is important for adaptation and response. In this work, the characteristics of temperature, precipitation, and extreme weather distribution and variation is summarized for a period of 60 years and the seasonal fluctuation of temperature and precipitation is also analyzed. The results illustrate the reduction in daily and annual temperature divergence on both temporal and spatial scales. However, the gaps remain relatively significant. Furthermore, the disparity in daily and annual precipitation are found to be increasing on both temporal and spatial scales. The findings indicate that climate change, to a certain extent, narrowed the temperature gap while widening the precipitation gap on temporal and spatial scales in China.


2017 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Raquel Nieto ◽  
Luis Gimeno ◽  
Cesar Azorin-Molina ◽  
Anita Drumond ◽  
...  

Abstract. We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 using both observations and ERA-Interim dataset. We compared the variability and trends of RH with those of land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. The sources of moisture for each particular region were identified by integrating different observational data and model outputs into a lagrangian approach. The aim was to account for the possible role of changes in air temperature over land, in comparison to sea surface temperature (SST), on RH variability. Results demonstrate a strong agreement between the interannual variability of RH and the interannual variability of precipitation and land evapotranspiration in regions with continentally-originated humidity. In contrast, albeit with the dominant positive trend of air temperature/SST ratio in the majority of the analyzed regions, the interannual variability of RH in the target regions did not show any significant correlation with this ratio over the source regions. Also, we did not find any significant association between the interannual variability of oceanic evaporation in the oceanic humidity source regions and RH in the target regions. Our findings stress the need for further investigation of the role of both dynamic and radiative factors in the evolution of RH over continental regions at different spatial scales.


2020 ◽  
Vol 24 (5) ◽  
pp. 2711-2729 ◽  
Author(s):  
Joseph L. Gutenson ◽  
Ahmad A. Tavakoly ◽  
Mark D. Wahl ◽  
Michael L. Follum

Abstract. Large-scale hydrologic forecasts should account for attenuation through lakes and reservoirs when flow regulation is present. Globally generalized methods for approximating outflow are required but must contend with operational complexity and a dearth of information on dam characteristics at global spatial scales. There is currently no consensus on the best approach for approximating reservoir release rates in large spatial scale hydrologic forecasting, particularly at diurnal time steps. This research compares two parsimonious reservoir routing methods at daily steps: Döll et al. (2003) and Hanasaki et al. (2006). These reservoir routing methods have been previously implemented in large-scale hydrologic modeling applications and have been typically evaluated seasonally. These routing methods are compared across 60 reservoirs operated by the U.S. Army Corps of Engineers. The authors vary empirical coefficients for both reservoir routing methods as part of a sensitivity analysis. The method proposed by Döll et al. (2003) outperformed that presented by Hanasaki et al. (2006) at a daily time step and improved model skill over most run-of-the-river conditions. The temporal resolution of the model influences model performances. The optimal model coefficients varied across the reservoirs in this study and model performance fluctuates between wet years and dry years, and for different configurations such as dams in series. Overall, the method proposed by Döll et al. (2003) could enhance large-scale hydrologic forecasting, but can be subject to instability under certain conditions.


2010 ◽  
Vol 7 (3) ◽  
pp. 959-977 ◽  
Author(s):  
M. Ueyama ◽  
K. Ichii ◽  
R. Hirata ◽  
K. Takagi ◽  
J. Asanuma ◽  
...  

Abstract. Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially improved the model performance, the uncertainties that remained in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
P. J. Young ◽  
V. Naik ◽  
A. M. Fiore ◽  
A. Gaudel ◽  
J. Guo ◽  
...  

The goal of the Tropospheric Ozone Assessment Report (TOAR) is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for the problem being addressed, whether biases can be tolerated or corrected, whether the model is appropriately constituted, and whether there is a way to satisfactorily quantify the uncertainty.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Amanda Bredesen ◽  
Christopher J. Brown

Water resources numerical models are dependent upon various input hydrologic field data. As models become increasingly complex and model simulation times expand, it is critical to understand the inherent value in using different input datasets available. One important category of model input is precipitation data. For hydrologic models, the precipitation data inputs are perhaps the most critical. Common precipitation model input includes either rain gauge or remotely-sensed data such next-generation radar-based (NEXRAD) data. NEXRAD data provides a higher level of spatial resolution than point rain gauge coverage, but is subject to more extensive data pre and post processing along with additional computational requirements. This study first documents the development and initial calibration of a HEC-HMS model of a subtropical watershed in the Upper St. Johns River Basin in Florida, USA. Then, the study compares calibration performance of the same HEC-HMS model using either rain gauge or NEXRAD precipitation inputs. The results are further discretized by comparing key calibration statistics such as Nash–Sutcliffe Efficiency for different spatial scale and at different rainfall return frequencies. The study revealed that at larger spatial scale, the calibration performance of the model was about the same for the two different precipitation datasets while the study showed some benefit of NEXRAD for smaller watersheds. Similarly, the study showed that for smaller return frequency precipitation events, NEXRAD data was superior.


Author(s):  
Yulin Cai ◽  
Gang Chen ◽  
Yali Wang ◽  
Li Yang

Daily maximum surface air temperature (Tamax) is a crucial factor for understanding complex land surface processes under rapid climate change. Remote detection of Tamax has widely relied on the empirical relationship between air temperature and land surface temperature (LST), a product derived from remote sensing. However, little is known about how such a relationship is affected by the high heterogeneity in landscapes and dynamics in seasonality. This study aims to advance our understanding of the roles of land cover and seasonal variation in the estimation of Tamax using the MODIS (Moderate Resolution Imaging Spectroradiometer) LST product. We developed statistical models to link Tamax and LST in the middle and lower reaches of the Yangtze River in China for five major land-cover types (i.e., forest, shrub, water, impervious surface, cropland, and grassland) and two seasons (i.e., growing season and non-growing season). Results show that the performance of modeling the Tamax-LST relationship was highly dependent on land cover and seasonal variation. Estimating Tamax over grasslands and water bodies achieved superior performance; while uncertainties were high over forested lands that contained extensive heterogeneity in species types, plant structure, and topography. We further found that all the land-cover specific models developed for the plant non-growing season outperformed the corresponding models developed for the growing season. Discrepancies in model performance mainly occurred in the vegetated areas (forest, cropland, and shrub), suggesting an important role of plant phenology in defining the statistical relationship between Tamax and LST. For impervious surfaces, the challenge of capturing the high spatial heterogeneity in urban settings using the low-resolution MODIS data made Tamax estimation a difficult task, which was especially true in the growing season.


2003 ◽  
Vol 33 (3) ◽  
pp. 398-409 ◽  
Author(s):  
Annikki Mäkelä

A generally accepted method has not emerged for managing the different temporal and spatial scales in a forest ecosystem. This paper reviews a hierarchical-modular modelling tradition, with the main focus on individual tree growth throughout the rotation. At this scale, model performance requires (i) realistic long-term dynamic properties, (ii) realistic responses of growth and mortality of competing individuals, and (iii) realistic responses to ecophysio logical inputs. Model development and validation are illustrated through allocation patterns, height growth, and size-related feedbacks. Empirical work to test the approach is reviewed. In this approach, finer scale effects are embedded in parameters calculated using more detailed, interacting modules. This is exemplified by (i) the within-year effect of weather on annual photosynthesis, (ii) the effects of fast soil processes on carbon allocation and photosynthesis, and (iii) the utilization of detailed stem structure to predict wood quality. Prevailing management paradigms are reflected in growth modelling. A shift of emphasis has occurred from productivity in homogeneous canopies towards, e.g., wood quality versus total yield, spatially more explicit models, and growth decline in old-growth forests. The new problems emphasize the hierarchy of the system and interscale interactions, suggesting that the hierarchical-modular approach could prove constructive.


2017 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Mirjam Blokker ◽  
Claudia Agudelo-Vera ◽  
Andreas Moerman ◽  
Peter van Thienen ◽  
Ilse Pieterse-Quirijns

Abstract. Many researchers have developed drinking water demand models with various temporal and spatial scales. A limited number of models is available at a temporal scale of 1 s and a spatial scale of a single home. The reasons for building these models were described in the papers in which the models were introduced, along with a discussion on their potential applications. However, the predicted applications are seldom re-examined. SIMDEUM, a stochastic end-use model for drinking water demand, has often been applied in research and practice since it was developed. We are therefore re-examining its applications in this paper. SIMDEUM's original purpose was to calculate maximum demands in order to design self-cleaning networks. Yet, the model has been useful in many more applications. This paper gives an overview of the many fields of application for SIMDEUM and shows where this type of demand model is indispensable and where it has limited practical value. This overview also leads to an understanding of the requirements for demand models in various applications.


Oceanography ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 12-15
Author(s):  
Francisco Chavez ◽  
◽  
Robert Miller ◽  
Frank Muller-Karger ◽  
Katrin Iken ◽  
...  

Life in the sea provides immense benefits to humans, from the food we eat to the air we breathe to the climate we live in. And because of human activities, the once seemingly vast and inexhaustible seas are changing—increasingly threatened by global-scale impacts, such as warming and acidification, as well as those that are more localized, like overfishing and pollution. Meanwhile, many of the species that live in the sea remain unknown. Even for the known species, our understanding of their roles in the ecosystem is still limited. Now more than ever, increased observation of life in the sea is required to find and describe unknown species, observe shifts in species abundance and distribution, identify adaptability and resilience to climate change, and understand vital roles that species play in our marine systems. New and emerging technologies promise to enable observation over the required temporal and spatial scales. And emerging data systems will allow development of critical ecological understanding, while informing responsible use of marine natural resources. This will lead to continued, sustainable ecosystem services and the benefits we derive from them, benefits that are only possible through conserving biodiversity and managing human actions wisely.


Sign in / Sign up

Export Citation Format

Share Document