scholarly journals Evolutionary persistence of DNA methylation for millions of years after ancient loss of a de novo methyltransferase

2017 ◽  
Author(s):  
Sandra Catania ◽  
Phillip A. Dumesic ◽  
Harold Pimentel ◽  
Ammar Nasif ◽  
Caitlin I. Stoddard ◽  
...  

SUMMARYCytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles, yet has been lost many times in diverse eukaryotic lineages. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase, Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 MYA. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 MY through a process analogous to Darwinian evolution of the genome.

2002 ◽  
Vol 22 (3) ◽  
pp. 704-723 ◽  
Author(s):  
Iping G. Lin ◽  
Li Han ◽  
Alexander Taghva ◽  
Laura E. O’Brien ◽  
Chih-Lin Hsieh

ABSTRACT CpG methylation is involved in a wide range of biological processes in vertebrates as well as in plants and fungi. To date, three enzymes, Dnmt1, Dnmt3a, and Dnmt3b, are known to have DNA methyltransferase activity in mouse and human. It has been proposed that de novo methylation observed in early embryos is predominantly carried out by the Dnmt3a and Dnmt3b methyltransferases, while Dntm1 is believed to be responsible for maintaining the established methylation patterns upon replication. Analysis of the sites methylated in vivo using the bisulfite genomic sequencing method confirms the previous finding that some regions of the plasmid are much more methylated by Dnmt3a than other regions on the same plasmid. However, the preferred targets of the enzyme cannot be determined due to the presence of other methylases, DNA binding proteins, and chromatin structure. To discern the DNA targets of Dnmt3a without these compounding factors, sites methylated by Dnmt3a in vitro were analyzed. These analyses revealed that the two cDNA strands have distinctly different methylation patterns. Dnmt3a prefers CpG sites on a strand in which it is flanked by pyrimidines over CpG sites flanked by purines in vitro. These findings indicate that, unlike Dnmt1, Dnmt3a most likely methylates one strand of DNA without concurrent methylation of the CpG site on the complementary strand. These findings also indicate that Dnmt3a may methylate some CpG sites more frequently than others, depending on the sequence context. Methylation of each DNA strand independently and with possible sequence preference is a novel feature among the known DNA methyltransferases.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


2010 ◽  
Vol 432 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Jason P. Ross ◽  
Isao Suetake ◽  
Shoji Tajima ◽  
Peter L. Molloy

The biochemical mechanism of short RNA-induced TGS (transcriptional gene silencing) in mammals is unknown. Two competing models exist; one suggesting that the short RNA interacts with a nascent transcribed RNA strand (RNA–RNA model) and the other implying that short RNA forms a heteroduplex with DNA from the unwound double helix, an R-loop structure (RNA–DNA model). Likewise, the requirement for DNA methylation to enact TGS is still controversial. In vitro assays using purified recombinant murine Dnmt (DNA methyltransferase) 1-dN (where dN indicates an N-terminal truncation), 3a and 3b enzymes and annealed oligonucleotides were designed to question whether Dnmts methylate DNA in a RNA–DNA heteroduplex context and whether a RNA–DNA heteroduplex R-loop is a good substrate for Dnmts. Specifically, model synthetic oligonucleotides were used to examine methylation of single-stranded oligonucleotides, annealed oligonucleotide duplexes, RNA–DNA heteroduplexes, DNA bubbles and R-loops. Dnmt methylation activity on the model substrates was quantified with initial velocity assays, novel ARORA (annealed RNA and DNA oligonucleotide-based methylation-sensitive restriction enzyme analysis), tBS (tagged-bisulfite sequencing) and the quantitative PCR-based method MethylQuant. We found that RNA–DNA heteroduplexes and R-loops are poor substrates for methylation by both the maintenance (Dnmt1) and de novo (Dnmt3a and Dnmt3b) Dnmts. These results suggest the proposed RNA/DNA model of TGS in mammals is unlikely. Analysis of tagged-bisulfite genomic sequencing led to the unexpected observation that Dnmt1-dN can methylate cytosines in a non-CpG context in DNA bubbles. This may have relevance in DNA replication and silencing of transcriptionally active loci in vivo.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
David B Lyons ◽  
Daniel Zilberman

Cytosine methylation regulates essential genome functions across eukaryotes, but the fundamental question of whether nucleosomal or naked DNA is the preferred substrate of plant and animal methyltransferases remains unresolved. Here, we show that genetic inactivation of a single DDM1/Lsh family nucleosome remodeler biases methylation toward inter-nucleosomal linker DNA in Arabidopsis thaliana and mouse. We find that DDM1 enables methylation of DNA bound to the nucleosome, suggesting that nucleosome-free DNA is the preferred substrate of eukaryotic methyltransferases in vivo. Furthermore, we show that simultaneous mutation of DDM1 and linker histone H1 in Arabidopsis reproduces the strong linker-specific methylation patterns of species that diverged from flowering plants and animals over a billion years ago. Our results indicate that in the absence of remodeling, nucleosomes are strong barriers to DNA methyltransferases. Linker-specific methylation can evolve simply by breaking the connection between nucleosome remodeling and DNA methylation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2804-2804
Author(s):  
Catrin Roolf ◽  
Anna Richter ◽  
Christoph Konkolefski ◽  
Yascha Khodamoradi ◽  
Gudrun Knuebel ◽  
...  

Abstract Introduction: Aberrant methylation of tumor suppressor gene promoters is frequently observed in acute lymphoblastic leukemia (ALL). Decitabine (DAC) and Azacitidine (AZA) are methyltransferase inhibitors (hypomethylating agents, HMA) which partially reverse aberrant DNA methylation. Recently, it was reported that DNA methylation patterns are regulated by casein kinase 2 (CK2) mediated phosphorylation of DNMT3a. CK2 is a key regulator of cell proliferation and survival and modulates hematopoiesis associated signaling cascades by phosphorylation of PTEN and AKT. Elevated CK2 expression has been demonstrated in hematological malignancies and plays a significant role in cell survival. However, it is not yet clear if CK2 inhibition is effective in ALL cells. Therefore, we examined the impact of conventional cytostatics, demethylation and CK2 inhibition on B- and T-ALL cells in single application and in combination. We hypothesized that demethylation and inhibition of CK2 act synergistically inducing greater impact on DNA hypomethylation and ALL cell proliferation. Methods: Several B- and T-ALL cell lines (SEM, RS4;11, Jurkat, CEM) as well as de novo ALL cells were treated with DAC and AZA in mono application. Further, DAC was combined with AraC, Doxorubicin (Doxo) or a CK2 inhibitor for up to 72 h. Cell proliferation and metabolism were determined (trypan blue staining & WST-1 assay). Methylation patterns of bisulfite converted DNA samples were examined using methylation specific qPCR on LINE-1 and the CDH13 gene. For in vivo studies, the SEM cell line was stably transfected with a dual firefly luciferase (ffluc) and GFP expression plasmid. NOD scid gamma (NSG) mice were intravenously injected with 2.5x106 SEM-ffluc-GFP cells. Starting on day (d) 7, mice were treated intraperitoneal. with a vehicle (saline: d7-d10), daily 0.5 mg/kg DAC (d7-d10), daily with 150 mg/kg AraC (d7, d8), or both. Leukemic engraftment and drug response were investigated weekly by flow cytometry (GFP) and bioluminescence imaging (ffluc) for up to 31 days, respectively. Additionally, for therapy monitoring 18F-FDG metabolism of spleen was evaluated using PET/CT on d21 and d28. Results : Mono application of HMA reduced metabolic activity and proliferation significantly (p<0.05) in B- and T-ALL cell lines and de novo cells. Notably, strongest effects were obtained with DAC in B- and T-ALL cells. Hereby, methylation status of the LINE-1 element significantly decreased in cells with the most pronounced effects at 24 h and 48 h after treatment with DAC. Methylation status of CDH13 was not affected. Furthermore, enhanced anti-proliferative effects on ALL cells were detected when DAC was combined with AraC or Doxo. Here, metabolic activity decreased significantly when DAC and Doxo or Ara-C were given simultaneously. Moreover, we evaluated the in vivo efficacy of DAC and DAC+AraC. Transplantation of SEM-ffluc-GFP into NSG mice resulted in stable engraftment of ALL cells. Using bioluminescence imaging, leukemic organ infiltration in bone marrow, spleen, lung, liver and brain increased in saline treated mice from d7: 3.0x107 ± 2.3x107 to d31: 6.2x109 ± 5.7x108 ph/s (n=9) continuously. In contrast, treatment with DAC alone or in combination with AraC significantly inhibited the engraftment of ALL cells in vivo. Notably, strongest anti-leukemic effects were induced with DAC alone and not in combination with AraC (d31: DAC: 3.1 x109 ± 1.7 x109 ph/s; n=11 vs. DAC+ AraC: 4.8 x109 ± 1.7 x109 ph/s, n=11). In addition, metabolic spleen volume determined by 18F-FDG-PET/CT on d28 was also markedly reduced in DAC-treated (DAC: 22.8 ± 15.5 mm3, DAC+AraC: 48.7 ± 15.4 mm3) compared to saline treated mice (81.1 ± 21.8 mm3). In vitro combination of DAC with an CK2 inhibitor (CX-4945) induced strong synergistic effects. Here, metabolic activity decreased significantly after 72 h (DAC+CX-4945: 32.2 ± 2.4 % compared to DAC: 72.6 ± 6.4 % and CX-4945: 68.6 ± 8.4 %; DMSO-control: 100 %). The efficacy of DAC and CK2 inhibition in an ALL-xenograft model is currently evaluated. In conclusion, we have shown that HMA significantly inhibit ALL cell proliferation (DAC more than AZA). Further, in vivo combination of DAC with AraC was less effective than DAC alone pointing at antagonistic effects. Of note, our in vitro data indicate that treatment with DAC and CK2 inhibition is synergistic and reveals significant anti-leukemic effects which have to be further elucidated. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Tanja Božić ◽  
Joana Frobel ◽  
Annamarija Raic ◽  
Fabio Ticconi ◽  
Chao-Chung Kuo ◽  
...  

AbstractThede novoDNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing ofDNMT3Ahas characteristic epigenetic and functional sequels. SpecificDNMT3Atranscripts were either downregulated or overexpressed in human hematopoietic stem and progenitor cells and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that particularly transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia (AML) expression of transcript 2 correlates with itsin vitroDNA methylation and gene expression signatures and is associated with overall survival, indicating thatDNMT3Avariants impact also on malignancies. Our results demonstrate that specificDNMT3Avariants have distinct epigenetic and functional impact. Particularly DNMT3A2 triggers hematopoietic differentiation and the corresponding signatures are reflected in AML.


1988 ◽  
Vol 16 (6) ◽  
pp. 944-947 ◽  
Author(s):  
TIMOTHY BESTOR

Abstract DNA (cytosine-5)-methyltransferase (DNA MeTase) establishes and maintains methylation patterns in the genome of higher eukaryotes. This enzyme has been purified, and the cDNA which encodes it has been cloned and sequenced. DNA MeTase appears to contain a large (1000 amino acid) N-terminal domain that contains potential metal-binding sites. This domain appears to contain a series of five to seven structural units of Mr about 20 000, since post-translational processing in vivo or partial proteolysis of the purified protein in vitro leads to the production of a series of catalytically active species differing in Mr by units of 20 000. The N-terminal domain is fused to a smaller (570 amino acid) C-terminal domain that is related to bacterial type II cytosine methyltransferases. The relevance of these findings for the biological function of DNA MeTase is discussed.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moein Dehbashi ◽  
Zohreh Hojati ◽  
Majid Motovali-bashi ◽  
Mazdak Ganjalikhani-Hakemi ◽  
Akihiro Shimosaka ◽  
...  

AbstractCancer recurrence presents a huge challenge in cancer patient management. Immune escape is a key mechanism of cancer progression and metastatic dissemination. CD25 is expressed in regulatory T (Treg) cells including tumor-infiltrating Treg cells (TI-Tregs). These cells specially activate and reinforce immune escape mechanism of cancers. The suppression of CD25/IL-2 interaction would be useful against Treg cells activation and ultimately immune escape of cancer. Here, software, web servers and databases were used, at which in silico designed small interfering RNAs (siRNAs), de novo designed peptides and virtual screened small molecules against CD25 were introduced for the prospect of eliminating cancer immune escape and obtaining successful treatment. We obtained siRNAs with low off-target effects. Further, small molecules based on the binding homology search in ligand and receptor similarity were introduced. Finally, the critical amino acids on CD25 were targeted by a de novo designed peptide with disulfide bond. Hence we introduced computational-based antagonists to lay a foundation for further in vitro and in vivo studies.


Biology ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 91 ◽  
Author(s):  
Miryam Pérez-Cañamás ◽  
Elizabeth Hevia ◽  
Carmen Hernández

DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii98-ii98
Author(s):  
Anne Marie Barrette ◽  
Alexandros Bouras ◽  
German Nudelman ◽  
Zarmeen Mussa ◽  
Elena Zaslavsky ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable disease, in large part due to its malignant infiltrative spread, and current clinical therapy fails to target the invasive nature of tumor cells in disease progression and recurrence. Here, we use the YAP-TEAD inhibitor Verteporfin to target a convergence point for regulating tumor invasion/metastasis and establish the robust anti-invasive therapeutic efficacy of this FDA-approved drug and its survival benefit across several preclinical glioma models. Using patient-derived GBM cells and orthotopic xenograft models (PDX), we show that Verteporfin treatment disrupts YAP/TAZ-TEAD activity and processes related to cell adhesion, migration and epithelial-mesenchymal transition. In-vitro, Verteporfin impairs tumor migration, invasion and motility dynamics. In-vivo, intraperitoneal administration of Verteporfin in mice with orthotopic PDX tumors shows consistent drug accumulation within the brain and decreased infiltrative tumor burden, across three independent experiments. Interestingly, PDX tumors with impaired invasion after Verteporfin treatment downregulate CDH2 and ITGB1 adhesion protein levels within the tumor microenvironment. Finally, Verteporfin treatment confers survival benefit in two independent PDX models: as monotherapy in de-novo GBM and in combination with standard-of-care chemoradiation in recurrent GBM. These findings indicate potential therapeutic value of this FDA-approved drug if repurposed for GBM patients.


Sign in / Sign up

Export Citation Format

Share Document