scholarly journals TET-mediated epimutagenesis of the Arabidopsis thaliana methylome

2017 ◽  
Author(s):  
Lexiang Ji ◽  
William T. Jordan ◽  
Xiuling Shi ◽  
Lulu Hu ◽  
Chuan He ◽  
...  

DNA methylation in the promoters of plant genes sometimes leads to transcriptional repression, and the wholesale removal of DNA methylation as seen in methyltransferase mutants results in drastic changes in gene expression and severe developmental defects. However, many cases of naturally-occurring DNA methylation variations have been reported, whereby the altered expression of differentially methylated genes is responsible for agronomically important traits. The ability to manipulate plant methylomes to generate populations of epigenetically distinct individuals could provide invaluable resources for breeding and research purposes. Here we describe “epimutagenesis”, a novel method to rapidly generate variation of DNA methylation through random demethylation of the Arabidopsis thaliana genome. This method involves the expression of a human Ten-eleven translocation (TET) enzyme, and results in widespread hypomethylation that can be inherited to subsequent generations, mimicking mutants in the maintenance DNA methyltransferase met1. Application of TET-mediated epimutagenesis to agriculturally significant plants may result in differential expression of alleles normally silenced by DNA methylation, uncovering previously hidden phenotypic variations.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4681-4691 ◽  
Author(s):  
Aparna Mahakali Zama ◽  
Mehmet Uzumcu

Abstract Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-β, which was down-regulated, whereas ERα was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 μg/kg·d or 100 mg/kg·d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERα and ERβ genes in postnatal d 50–60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERβ promoter regions (P < 0.05), whereas the ERα promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.



Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 831-831
Author(s):  
Megan Ryan ◽  
Leandro Cerchietti ◽  
Maria E. Figueroa ◽  
John Greally ◽  
Ari Melnick

Abstract DNA methyltransferase inhibitor drugs (MTIs) such as decitabine can overcome gene silencing due to aberrant hypermethylation of gene promoters. Presumably, this effect is responsible for the therapeutic activity of MTIs as clinically demonstrated in myelodysplasias (MDS) and leukemias. Other tumors such as diffuse large B-cell lymphomas (DLBCLs) can also present with aberrant promoter hypermethylation. However, it is currently difficult to prospectively identify patients likely to respond to MTIs, since specific methylation markers or signatures have not yet been identified. We predicted that decitabine would have anti-lymphoma activity in a subset of DLBCLs, and that these cases would exhibit specific methylation signatures predictive of response to these drugs. To determine whether this is the case we first exposed a panel of 7 DLBCL cell lines (Ly1, Ly7, Ly10, SU-DHL6, Farage, Pfeiffer and Toledo) to increasing concentrations of decitabine (0.5, 1, 2.5, 5, 10, 50 and 100 μM) administered after synchronization by 12 hr serum starvation. Viability was assessed after 48 hr of culture by MTS-based assay and Trypan blue exclusion. The IC25 and IC50 were calculated for all cell lines by constructing dose-response curves. The IC25 was used to discriminate sensitive (6.3 ± 1.2 μM) vs. resistant (49.4 ± 5 μM, p < 0.01) cell lines. Interestingly, there was no correlation between MTI sensitivity and DLBCL subtype as defined by recent gene expression profiling classification efforts (i.e. GCB vs. ABC, or BCR vs. OxPhos). To identify the methylation signatures of these DLBCL cells we used a method that we developed for genome-wide DNA methylation quantification called HELP (HpaII tiny fragment Enrichment by LM-PCR). HELP is based on comparative Msp1 and HpaII digestion of genomic DNA, followed by size specific amplification and co-hybridization to custom high-density oligonucleotide arrays designed to provide uniform data collection over 25,000 promoters. HELP compares favorably to other high throughput methods in that it is highly reproducible (R > 0.98) and has an extremely robust signal-to-noise ratio. DNA was collected from the DLBCL cells for HELP prior to drug treatment. Most significantly we found that unsupervised (i.e. unbiased) clustering of DNA methylation profiles could readily segregate decitabine resistant vs. sensitive DLBCL cell lines. Correspondence analysis clearly identified a methylation signature consisting of 133 differentially methylated genes that distinguishes between decitabine sensitive and resistant cells. Most of these appeared to be functionally relevant including such genes as Caspase-9, RARB, JUNB, and ELK1. Biological assays to determine the contribution of these genes to the phenotype are underway. Taken together, our data suggest that MTIs might be effective in a cohort of DLBCL cases that exhibit the specific methylation signature that we have identified. Prospective evaluation of the predictive value of this signature may allow optimal selection of patients for clinical trials with these agents.



Genetics ◽  
2011 ◽  
Vol 187 (3) ◽  
pp. 977-979 ◽  
Author(s):  
Ulf Naumann ◽  
Lucia Daxinger ◽  
Tatsuo Kanno ◽  
Changho Eun ◽  
Quan Long ◽  
...  


2007 ◽  
Vol 28 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Kevin Myant ◽  
Irina Stancheva

ABSTRACT LSH, a protein related to the SNF2 family of chromatin-remodeling ATPases, is required for efficient DNA methylation in mammals. How LSH functions to support DNA methylation and whether it associates with a large protein complex containing DNA methyltransferase (DNMT) enzymes is currently unclear. Here we show that, unlike many other chromatin-remodeling ATPases, native LSH is present mostly as a monomeric protein in nuclear extracts of mammalian cells and cannot be detected in a large multisubunit complex. However, when targeted to a promoter of a reporter gene, LSH acts as an efficient transcriptional repressor. Using this as an assay to identify proteins that are required for LSH-mediated repression we found that LSH cooperates with the DNMTs DNMT1 and DNMT3B and with the histone deacetylases (HDACs) HDAC1 and HDAC2 to silence transcription. We show that transcriptional repression by LSH and interactions with HDACs are lost in DNMT1 and DNMT3B knockout cells but that the enzymatic activities of DNMTs are not required for LSH-mediated silencing. Our data suggest that LSH serves as a recruiting factor for DNMTs and HDACs to establish transcriptionally repressive chromatin which is perhaps further stabilized by DNA methylation at targeted loci.



2019 ◽  
Author(s):  
Haoling Huang ◽  
Ping Wu ◽  
Shaolun Zhang ◽  
Qi Shang ◽  
Haotong Yin ◽  
...  

Abstract Background Bombyx mori nucleopolyhedrosis virus (BmNPV) is a major pathogen that threatens the sustainability of the sericultural industry. DNA methylation is a widespread gene regulation mode in epigenetics, which plays an important role in host immune response. Until now, little has been known about epigenetic regulation on virus diseases in insects. This study aims to explore the role of DNA methylation in BmNPV proliferation.Results Inhibiting DNA methyltransferase (DNMT) activity of silkworm can suppress BmNPV replication. The integrated analysis of transcriptomes and DNA methylomes in silkworm midguts infected with or without BmNPV showed that both the expression pattern of transcriptome and DNA methylation pattern are changed significantly upon BmNPV infection. A total of 291 differentially methylated genes (DMGs) were observed in BmNPV infected midguts, among which, 126 genes were hypermethylated and 115 genes were hypomethylated. Significant differences in both mRNA transcript level and DNA methylated levels were found in 26 genes. BS-PCR validated the hypermethylation of BGIBMGA014008 , a structural maintenance of chromosomes protein gene in the BmNPV-infected midgut. In addition, DNMT inhibition reduced the expression of inhibitor of apoptosis family genes, iap1 from BmNPV, Bmiap2, BmSurvivin1 and BmSurvivin2 .Conclusion Our results indicate that DNA methylation plays positive roles in BmNPV proliferation and loss of DNMT activity could induce the apoptosis of infected cells to suppress BmNPV proliferation. Our results may provide a new idea and research direction for the molecular mechanism on insect-virus interaction.



2022 ◽  
Author(s):  
Andrew C. Read ◽  
Trevor Weiss ◽  
Peter A. Crisp ◽  
Zhikai Liang ◽  
Jaclyn Noshay ◽  
...  

The Domains Rearranged Methyltransferases (DRMs) are crucial for RNA-directed DNA methylation (RdDM) in plant species. Setaria viridis is a model monocot species with a relatively compact genome that has limited transposable element content. CRISPR-based genome editing approaches were used to create loss-of-function alleles for the two putative functional DRM genes in S. viridis to probe the role of RdDM. The analysis of drm1ab double mutant plants revealed limited morphological consequences for the loss of RdDM. Whole-genome methylation profiling provided evidence for wide-spread loss of methylation in CHH sequence contexts, particularly in regions with high CHH methylation in wild-type plants. There is also evidence for locus-specific loss of CG and CHG methylation, even in some regions that lack CHH methylation. Transcriptome profiling identified a limited number of genes with altered expression in the drm1ab mutants. The majority of genes with elevated CHH methylation directly surrounding the transcription start site or in nearby promoter regions do not have altered expression in the drm1ab mutant even when this methylation is lost, suggesting limited regulation of gene expression by RdDM. Detailed analysis of the expression of transposable elements identified several transposons that are transcriptionally activated in drm1ab mutants. These transposons likely require active RdDM for maintenance of transcriptional repression.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Young-Chae Kim ◽  
Sunmi Seok ◽  
Yang Zhang ◽  
Jian Ma ◽  
Bo Kong ◽  
...  

AbstractHepatic lipogenesis is normally tightly regulated but is aberrantly elevated in obesity. Fibroblast Growth Factor-15/19 (mouse FGF15, human FGF19) are bile acid-induced late fed-state gut hormones that decrease hepatic lipid levels by unclear mechanisms. We show that FGF15/19 and FGF15/19-activated Small Heterodimer Partner (SHP/NR0B2) have a role in transcriptional repression of lipogenesis. Comparative genomic analyses reveal that most of the SHP cistrome, including lipogenic genes repressed by FGF19, have overlapping CpG islands. FGF19 treatment or SHP overexpression in mice inhibits lipogenesis in a DNA methyltransferase-3a (DNMT3A)-dependent manner. FGF19-mediated activation of SHP via phosphorylation recruits DNMT3A to lipogenic genes, leading to epigenetic repression via DNA methylation. In non-alcoholic fatty liver disease (NAFLD) patients and obese mice, occupancy of SHP and DNMT3A and DNA methylation at lipogenic genes are low, with elevated gene expression. In conclusion, FGF15/19 represses hepatic lipogenesis by activating SHP and DNMT3A physiologically, which is likely dysregulated in NAFLD.



2020 ◽  
Author(s):  
Rurika Oka ◽  
Mattijs Bliek ◽  
Huub C.J. Hoefsloot ◽  
Maike Stam

AbstractBackgroundDNA methylation is an important factor in the regulation of gene expression and genome stability. High DNA methylation levels are associated with transcriptional repression. In mammalian systems, unmethylated, low methylated and fully methylated regions (UMRs, LMRs, and FMRs, respectively) can be distinguished. UMRs are associated with proximal regulatory regions, while LMRs are associated with distal regulatory regions. Although DNA methylation is mainly limited to the CG context in mammals, while it occurs in CG, CHG and CHH contexts in plants, UMRs and LMRs were expected to occupy similar genomic sequences in both mammals and plants.ResultsThis study investigated major model and crop plants such as Arabidopsis thaliana, tomato (Solanum lycopersicum), rice (Oryza sativa) and maize (Zea mays), and shows that plant genomes can also be subdivided in UMRs, LMRs and FMRs, but that LMRs are mainly present in the CHG context rather than the CG context. Strikingly, the identified CHG LMRs were enriched in transposable elements rather than regulatory regions. Maize candidate regulatory regions overlapped with UMRs. LMRs were enriched for heterochromatic histone modifications and depleted for DNase accessibility and H3K9 acetylation. CHG LMRs form a distinct, abundant cluster of loci, indicating they have a different role than FMRs.ConclusionsBoth mammalian and plant genomes can be segmented in three distinct classes of loci, UMRs, LMRs and FMRs, indicating similar underlying mechanisms. Unlike in mammals, distal regulatory sequences in plants appear to overlap with UMRs instead of LMRs. Our data indicate that LMRs in plants have a different function than those in mammals.



Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 831-838 ◽  
Author(s):  
Tetsuji Kakutani ◽  
Kyoko Munakata ◽  
Eric J Richards ◽  
Hirohiko Hirochika

Abstract In contrast to mammalian epigenetic phenomena, where resetting of gene expression generally occurs in each generation, epigenetic states of plant genes are often stably transmitted through generations. The Arabidopsis mutation ddm1 causes a 70% reduction in genomic 5-methylcytosine level. We have previously shown that the ddm1 mutation results in an accumulation of a variety of developmental abnormalities by slowly inducing heritable changes in other loci. Each of the examined ddm1-induced developmental abnormalities is stably transmitted even when segregated from the potentiating ddm1 mutation. Here, the inheritance of DNA hypomethylation induced by ddm1 was examined in outcross progeny by HPLC and Southern analyses. The results indicate that (i) DDM1 gene function is not necessary during the gametophyte stage, (ii) ddm1 mutation is completely recessive, and (iii) remethylation of sequences hypomethylated by the ddm1 mutation is extremely slow or nonexistent even in wild-type DDM1 backgrounds. The stable transmission of DNA methylation status may be related to the meiotic heritability of the ddm1-induced developmental abnormalities.



Sign in / Sign up

Export Citation Format

Share Document