scholarly journals Inferring multi-scale neural mechanisms with brain network modelling

2017 ◽  
Author(s):  
Michael Schirner ◽  
Anthony Randal McIntosh ◽  
Viktor K. Jirsa ◽  
Gustavo Deco ◽  
Petra Ritter

The neurophysiological processes underlying non-invasive brain activity measurements are not well understood. Here, we developed a novel connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects’ individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) slow resting-state fMRI oscillations, (2) spatial topologies of functional connectivity networks, (3) excitation-inhibition balance, (4, 5) pulsed inhibition on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Michael Schirner ◽  
Anthony Randal McIntosh ◽  
Viktor Jirsa ◽  
Gustavo Deco ◽  
Petra Ritter

The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies.


2018 ◽  
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

AbstractBrain Network Models have become a promising theoretical framework in simulating signals that are representative of whole brain activity such as resting state fMRI. However, it has been difficult to compare the complex brain activity between simulated and empirical data. Previous studies have used simple metrics that surmise coordination between regions such as functional connectivity, and we extend on this by using various different dynamical analysis tools that are currently used to understand resting state fMRI. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the Brain Network Model. We conclude that the dynamic properties that gauge more temporal structure rather than spatial coordination in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole brain activity.


2019 ◽  
Vol 3 (2) ◽  
pp. 405-426 ◽  
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. We extend this by applying various different dynamic analysis tools that are currently used to understand empirical resting-state fMRI (rs-fMRI) to the simulated data. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the brain network model. We conclude that the dynamic properties that explicitly examine patterns of signal as a function of time rather than spatial coordination between different brain regions in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity.


2016 ◽  
Author(s):  
S.J. Hanson ◽  
D. Mastrovito ◽  
C. Hanson ◽  
J. Ramsey ◽  
C. Glymour

AbstractScale-free networks (SFN) arise from simple growth processes, which can encourage efficient, centralized and fault tolerant communication (1). Recently its been shown that stable network hub structure is governed by a phase transition at exponents (>2.0) causing a dramatic change in network structure including a loss of global connectivity, an increasing minimum dominating node set, and a shift towards increasing connectivity growth compared to node growth. Is this SFN shift identifiable in atypical brain activity? The Pareto Distribution (P(D)∼D∧-β) on the hub Degree (D) is a signature of scale-free networks. During resting-state, we assess Degree exponents across a large range of neurotypical and atypical subjects. We use graph complexity theory to provide a predictive theory of the brain network structure. Results.We show that neurotypical resting-state fMRI brain activity possess scale-free Pareto exponents (1.8 se .01) in a single individual scanned over 66 days as well as in 60 different individuals (1.8 se .02). We also show that 60 individuals with Autistic Spectrum Disorder, and 60 individuals with Schizophrenia have significantly higher (>2.0) scale-free exponents (2.4 se .03, 2.3 se .04), indicating more fractionated and less controllable dynamics in the brain networks revealed in resting state. Finally we show that the exponent values vary with phenotypic measures of atypical disease severity indicating that the global topology of the network itself can provide specific diagnostic biomarkers for atypical brain activity.


2021 ◽  
Vol 14 (11) ◽  
pp. 1741-1747
Author(s):  
Wen-Jia Dong ◽  
◽  
Chu-Qi Li ◽  
Yong-Qiang Shu ◽  
Wen-Qing Shi ◽  
...  

AIM: To explore the intrinsic brain activity variations in retinal vein occlusion (RVO) subjects by using the voxel-wise degree centrality (DC) technique. METHODS: Twenty-one subjects with RVO and twenty-one healthy controls (HCs) were enlisted and underwent the resting-state functional magnetic resonance imaging (rs-fMRI) examination. The spontaneous cerebrum activity variations were inspected using the DC technology. The receiver operating characteristic (ROC) curve was implemented to distinguish the DC values of RVOs from HCs. The relationships between DC signal of definite regions of interest and the clinical characteristics in RVO group were evaluated by Pearson’s correlation analysis. RESULTS: RVOs showed notably higher DC signals in right superior parietal lobule, middle frontal gyrus and left precuneus, but decreased DC signals in left middle temporal gyrus and bilateral anterior cingulated (BAC) when comparing with HCs. The mean DC value of RVOs in the BAC were negatively correlated with the anxiety and depression scale. CONCLUSION: RVO is associated aberrant intrinsic brain activity patterns in several brain areas including pain-related as well as visual-related regions, which might assist to reveal the latent neural mechanisms.


2021 ◽  
Author(s):  
Yi-Nuo Liu ◽  
Yu-Xuan Gao ◽  
Hui-Ye Shu ◽  
Qiu-Yu Li ◽  
Qian-Min Ge ◽  
...  

Abstract Objective: We aimed to identify potential functional network brain-activity abnormalities in patients with orbital fractures (OFs) by using the voxel-wise degree centrality (DC) method.Methods:We selected 20 patients with OFs (12 men and 8 women) and 20 healthy controls (HCs; 12 men and 8 women) matched by gender, age, and education level for this study. Resting-state functional magnetic resonance imaging (fMRI) has been widely used in various disciplines. We calculated receiver operating characteristic (ROC) curves to differentiate characteristics between patients with orbital fractures and HCs; in addition, we applied correlation analyses between behavioral performance and average DC values in different areas. The DC method served to evaluate spontaneous brain activity.Results:The DC values of patients with OFs were higher in the right cerebellum 9 area (Cerebelum_9_R) and left cerebellar peduncle 2 area (Cerebelum_Crus2_L) than those in HCs. The area under the curve (AUC) values for Cerebelum_9_R and Cerebelum_Crus2_L were 0.983 and 1, respectively. The accuracy of our ROC curve analysis result was reliable. Conclusion:Many brain regions seem to show abnormal brain network characteristics in patients with orbital fractures, suggesting potential neuropathic mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric Lacosse ◽  
Klaus Scheffler ◽  
Gabriele Lohmann ◽  
Georg Martius

AbstractCognitive fMRI research primarily relies on task-averaged responses over many subjects to describe general principles of brain function. Nonetheless, there exists a large variability between subjects that is also reflected in spontaneous brain activity as measured by resting state fMRI (rsfMRI). Leveraging this fact, several recent studies have therefore aimed at predicting task activation from rsfMRI using various machine learning methods within a growing literature on ‘connectome fingerprinting’. In reviewing these results, we found lack of an evaluation against robust baselines that reliably supports a novelty of predictions for this task. On closer examination to reported methods, we found most underperform against trivial baseline model performances based on massive group averaging when whole-cortex prediction is considered. Here we present a modification to published methods that remedies this problem to large extent. Our proposed modification is based on a single-vertex approach that replaces commonly used brain parcellations. We further provide a summary of this model evaluation by characterizing empirical properties of where prediction for this task appears possible, explaining why some predictions largely fail for certain targets. Finally, with these empirical observations we investigate whether individual prediction scores explain individual behavioral differences in a task.


2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


Author(s):  
Toshiki Kusano ◽  
Hiroki Kurashige ◽  
Isao Nambu ◽  
Yoshiya Moriguchi ◽  
Takashi Hanakawa ◽  
...  

AbstractSeveral functional magnetic resonance imaging (fMRI) studies have demonstrated that resting-state brain activity consists of multiple components, each corresponding to the spatial pattern of brain activity induced by performing a task. Especially in a movement task, such components have been shown to correspond to the brain activity pattern of the relevant anatomical region, meaning that the voxels of pattern that are cooperatively activated while using a body part (e.g., foot, hand, and tongue) also behave cooperatively in the resting state. However, it is unclear whether the components involved in resting-state brain activity correspond to those induced by the movement of discrete body parts. To address this issue, in the present study, we focused on wrist and finger movements in the hand, and a cross-decoding technique trained to discriminate between the multi-voxel patterns induced by wrist and finger movement was applied to the resting-state fMRI. We found that the multi-voxel pattern in resting-state brain activity corresponds to either wrist or finger movements in the motor-related areas of each hemisphere of the cerebrum and cerebellum. These results suggest that resting-state brain activity in the motor-related areas consists of the components corresponding to the elementary movements of individual body parts. Therefore, the resting-state brain activity possibly has a finer structure than considered previously.


Sign in / Sign up

Export Citation Format

Share Document