scholarly journals Pivot-and-bond model explains microtubule bundle formation

2017 ◽  
Author(s):  
Marcel Prelogović ◽  
Lora Winters ◽  
Ana Milas ◽  
Iva M. Tolić ◽  
Nenad Pavin

ABSTRACTDuring mitosis, bundles of microtubules form a spindle, but the physical mechanism of bundle formation is still not known. Here we show that random angular movement of microtubules around the spindle pole and forces exerted by passive cross-linking proteins are sufficient for the formation of stable microtubule bundles. We test these predictions by experiments in wild-type and ase1Δ fission yeast cells. In conclusion, the angular motion drives the alignment of microtubules, which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.

2007 ◽  
Vol 18 (6) ◽  
pp. 2216-2225 ◽  
Author(s):  
Ekaterina L. Grishchuk ◽  
Ilia S. Spiridonov ◽  
J. Richard McIntosh

Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end–directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Gheorghe Cojoc ◽  
Ana-Maria Florescu ◽  
Alexander Krull ◽  
Anna H. Klemm ◽  
Nenad Pavin ◽  
...  

Abstract Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3–4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells.


1991 ◽  
Vol 114 (3) ◽  
pp. 515-532 ◽  
Author(s):  
M Snyder ◽  
S Gehrung ◽  
B D Page

The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of G1 cells. Later it concentrates at the bud tip in budded cells. At cytokinesis, the SPA2 protein is at the neck between the mother and daughter cells. Analysis of unbudded haploid cells has suggested a series of events that occurs during G1. The SPA2 patch is established very early in G1, while the spindle pole body residues on the distal side of the nucleus. Later, microtubules emanating from the spindle pole body intersect the SPA2 crescent, and the nucleus probably rotates towards the SPA2 patch. By middle G1, most cells contain the SPB on the side of the nucleus proximal to the SPA2 patch, and a long extranuclear microtubule bundle intersects this patch. We suggest that a microtubule capture site exists in the SPA2 staining region that stabilizes the long microtubule bundle; this capture site may be responsible for rotation of the nucleus. Cells containing a polarized distribution of the SPA2 protein also possess a polarized distribution of actin spots in the same region, although the actin staining is much more diffuse. Moreover, cdc4 mutants, which form multiple buds at the restrictive temperature, exhibit simultaneous staining of the SPA2 protein and actin spots in a subset of the bud tips. spa2 mutants contain a polarized distribution of actin spots, and act1-1 and act1-2 mutants often contain a polarized distribution of the SPA2 protein suggesting that the SPA2 protein is not required for localization of the actin spots and the actin spots are not required for localization of the SPA2 protein. cdc24 mutants, which fail to form buds at the restrictive temperature, fail to exhibit polarized localization of the SPA2 protein and actin spots, indicating that the CDC24 protein is directly or indirectly responsible for controlling the polarity of these proteins. Based on the cell cycle distribution of the SPA2 protein, a "cytokinesis tag" model is proposed to explain the mechanism of the non-random positioning of bud sites in haploid yeast cells.


2020 ◽  
Author(s):  
Charalampos Rallis ◽  
Michael Mülleder ◽  
Graeme Smith ◽  
Yan Zi Au ◽  
Markus Ralser ◽  
...  

AbstractAmino acid deprivation or supplementation can affect cellular and organismal lifespan, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino-acid levels during chronological aging of non-dividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino-acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological lifespan of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the lifespan of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular lifespan.


2021 ◽  
Author(s):  
Wasim A Sayyad ◽  
Thomas D Pollard

Cytokinesis nodes are assemblies of stoichiometric ratios of proteins associated with the plasma membrane, which serve as precursors for the contractile ring during cytokinesis by fission yeast. The total number of nodes is uncertain, because of the limitations of the methods used previously. Here we used the ~140 nm resolution of Airyscan confocal microscopy to resolve a large population of dim, unitary cytokinesis nodes in 3D reconstructions of whole fission yeast cells. Wild-type fission yeast cells make about 200 unitary cytokinesis nodes. Most, but not all of these nodes condense into a contractile ring. The number of cytokinesis nodes scales with cell size in four strains tested, although wide rga4Δ mutant cells form somewhat fewer cytokinesis nodes than expected from the overall trend. The surface density of Pom1 kinase on the plasma membrane around the equators of cells is similar with a wide range of node numbers, so Pom1 does not control cytokinesis node number. However, varying protein concentrations with the nmt1 promoter showed that the numbers of nodes increase above a baseline of about 200 with the total cellular concentration of either Pom1 or the kinase Cdr2.


1990 ◽  
Vol 110 (5) ◽  
pp. 1617-1621 ◽  
Author(s):  
I M Hagan ◽  
P N Riddle ◽  
J S Hyams

We have used a new cinemicroscopy technique in combination with antitubulin immunofluorescence microscopy to investigate the timing of mitotic events in cells of the fission yeast Schizosaccharomyces pombe having lengths at division between 7 and 60 microns. Wild-type fission yeast cells divide at a length of 14 microns. Separation of daughter nuclei (anaphase B) proceeds at a rate of 1.6 +/- 0.2 microns min-1, until the spindle extends the length of the cell. Coincident with spindle depolymerization, the nuclei reverse direction and take up positions that will become the center of the two daughter cells. This post-mitotic nuclear migration occurs at a rate of 1.4 +/- 0.5 microns-1. In cells in which the weel+ gene is overexpressed fivefold and that have an average length at mitosis of 28 microns, the rate of nuclear separation was only slightly reduced but, as spindles in these cells measure 20-22 microns, the duration of anaphase B was extended by approximately 40%. By contrast, in the mutant weel.50, which divides at 7 microns, both the rate and duration of anaphase B were indistinguishable from wild type. Nuclei reach the ends of these cells earlier but remain there until a point corresponding to the time of postmitotic nuclear migration in wild type. Thus, the events of mitosis can be extended but not abbreviated. These results are discussed in terms of a mitotic termination control that monitors many different events, one of which is spindle elongation.


2004 ◽  
Vol 15 (4) ◽  
pp. 1793-1801 ◽  
Author(s):  
Fred Chang ◽  
Fabio Re ◽  
Sarah Sebastian ◽  
Shelley Sazer ◽  
Jeremy Luban

Human immunodeficiency virus type 1 (HIV-1) Vpr is a 15-kDa accessory protein that contributes to several steps in the viral replication cycle and promotes virus-associated pathology. Previous studies demonstrated that Vpr inhibits G2/M cell cycle progression in both human cells and in the fission yeast Schizosaccharomyces pombe. Here, we report that, upon induction of vpr expression, fission yeast exhibited numerous defects in the assembly and function of the mitotic spindle. In particular, two spindle pole body proteins, sad1p and the polo kinase plo1p, were delocalized in vpr-expressing yeast cells, suggesting that spindle pole body integrity was perturbed. In addition, nuclear envelope structure, contractile actin ring formation, and cytokinesis were also disrupted. Similar Vpr-induced defects in mitosis and cytokinesis were observed in human cells, including aberrant mitotic spindles, multiple centrosomes, and multinucleate cells. These defects in cell division and centrosomes might account for some of the pathological effects associated with HIV-1 infection.


1988 ◽  
Vol 34 (12) ◽  
pp. 1338-1343 ◽  
Author(s):  
Hisao Miyata ◽  
Machiko Miyata ◽  
Byron F. Johnson

The growth patterns of individual cells of the fission yeast (Schizosaccharomyces pombe wild-type cells, strain 972 h−; cells exposed to hydroxyurea; and cdc mutants, 11-123, 2-33) were investigated by time-lapse photomicrography. Wild-type cells showed one, two, or three linear-growth segments followed by a constant-length stage. Cells with two segments were most frequent. Hydroxyurea cells that divided as oversized cells (about three times the birth length) had three linear-growth segments in a cycle. Mutant cdc11-123 cells did not divide but had a constant-length stage separating the cycles; both the first and second cycles consisted of two linear-growth segments, and cells were oversized at the second constant-length stage (about 3.5 times the birth length). Elongating cdc2-33 cells that did not divide and were oversized (about five times the birth length) while under observation, showed four linear-growth segments. Cells of all strains showed 30 to 40% increase in growth rate at the rate-change point and maintained approximate exponential (pseudo-exponential) growth. We conclude that the normal growth pattern of individual fission-yeast cells is the pseudo-exponential pattern.


2018 ◽  
Vol 29 (11) ◽  
pp. 1332-1345 ◽  
Author(s):  
Anna H. Klemm ◽  
Agneza Bosilj ◽  
Matko Gluncˇic´ ◽  
Nenad Pavin ◽  
Iva M. Tolic´

During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.


2021 ◽  
pp. jcs.251769
Author(s):  
Elizabeth Wood ◽  
Kazunori Kume ◽  
Francisco J. Navarro ◽  
Paul Nurse

Fission yeast cells divide at a similar cell length with little variation about the mean. This is thought to be the result of a control mechanism that senses size and corrects for any deviations by advancing or delaying onset of mitosis. Gene deletions that advance cells into mitosis at a smaller size or delay cells entering mitosis, have identified genes potentially involved in this mechanism. However, the molecular basis of this control is still not understood. In this work, we have screened for genes, which when deleted, increase the variability in size of dividing cells. The strongest candidate of this screen was mga2. The mga2 deletion shows a greater variation in cell length at division, with a coefficient of variation (CV) of 15-24% while the wild type strain has a CV of 5-8%. Furthermore, unlike wild type cells, the mga2 deletion cells are unable to correct cell size deviations within one cell cycle. We show that the mga2 gene genetically interacts with nem1 and influences the nuclear membrane, and speculate that it may influence the nucleus/cytoplasmic transport of CDK regulators.


Sign in / Sign up

Export Citation Format

Share Document