scholarly journals Three-dimensional cell neighbourhood impacts differentiation in the inner mass cells of the mouse blastocyst

2017 ◽  
Author(s):  
Sabine C. Fischer ◽  
Elena Corujo-Simón ◽  
Joaquín Lilao-Garzón ◽  
Ernst H. K. Stelzer ◽  
Silvia Muñoz-Descalzo

AbstractDuring mammalian blastocyst development, inner cell mass (ICM) cells differentiate into epiblast (Epi) or primitive endoderm (PrE). These two fates are characterised by the transcription factors NANOG and GATA6, respectively. Here, we present quantitative three-dimensional single cell-based neighbourhood analyses to investigate the spatial distribution of NANOG and GATA6 expression in the ICM of the mouse blastocyst. The cell neighbourhood is characterised by the expression levels of the fate markers in the surrounding cells, together with the number of surrounding cells and cell position. We find that cell neighbourhoods are established in early blastocysts and different for cells expressing different levels of NANOG and GATA6. Highest NANOG expressing cells occupy specific positions within the ICM and are surrounded by 9 neighbours, while GATA6 expressing cells cluster according to their GATA6 levels. The analysis of mutants reveals that NANOG local neighbourhood is regulated by GATA6.Summary statementThree-dimensional cell neighbourhood, which includes fate marker levels, number of neighbouring cells and cell position, determines cell fate decision in early mouse embryos.

2021 ◽  
Author(s):  
Stanley E. Strawbridge ◽  
Agata Kurowski ◽  
Elena Corujo-Simon ◽  
Alexander G. Fletcher ◽  
Jennifer Nichols

AbstractA crucial aspect of embryology is relating the position of individual cells to the broader geometry of the embryo. A classic example can be seen in the first cell-fate decision of the mouse embryo, where interior cells become inner cell mass and exterior cells become trophectoderm. Advances in image acquisition and processing technology used by quantitative immunofluorescence have resulted in the production of embryo images with increasingly rich spatial information that demand accessible analytical methods. Here, we describe a simple mathematical framework and an unsupervised machine learning approach for classifying interior and exterior points of a three-dimensional point-cloud. We benchmark our method to demonstrate that it yields higher classification rates for pre-implantation mouse embryos and greater accuracy when challenged with local surface concavities. This method should prove useful to experimentalists within and beyond embryology, with broader applications in the biological and life sciences.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jan J Zylicz ◽  
Maud Borensztein ◽  
Frederick CK Wong ◽  
Yun Huang ◽  
Caroline Lee ◽  
...  

Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.


2018 ◽  
Vol 475 (6) ◽  
pp. 1075-1089 ◽  
Author(s):  
Tapan Kumar Mistri ◽  
Wibowo Arindrarto ◽  
Wei Ping Ng ◽  
Choayang Wang ◽  
Leng Hiong Lim ◽  
...  

Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4, and Utf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 109-125
Author(s):  
A. J. Copp

Increase in cell number has been compared with mitotic activity in the polar and mural trophectoderm and in the inner cell mass (ICM) of mouse blastocysts. The results indicate that whereas ICM cells divide at a rate which is compatible with the rate of increase of ICM cell number, polar trophectoderm cells divide faster and mural trophectoderm cells slower than can account for their own rates of cell number increase. It is suggested that the ICM induces a high rate of proliferation in the polar trophectoderm and that there is a resulting cell shift from polar to mural regions during blastocyst development. Mural trophectoderm cells close to the ICM divide faster than those farther away, indicating that cells may retain a ‘memory’ of ICM contact for some time after leaving the ICM. There is considerable cell death in the blastocyst, but this is restricted to a short period of time coincident with the appearance of primitive endoderm.


Reproduction ◽  
2013 ◽  
Vol 145 (4) ◽  
pp. 345-355 ◽  
Author(s):  
F Moulavi ◽  
S M Hosseini ◽  
M Hajian ◽  
M Forouzanfar ◽  
P Abedi ◽  
...  

The effect of technical steps of somatic cell nuclear transfer (SCNT) on different aspects of cloned embryo development was investigated in sheep.In vitro-matured oocytes were enucleated in the presence or absence of zona and reconstituted by three different SCNT techniques: conventional zona-intact (ZI-NT), standard zona-free (ZF-NT) and intracytoplasmic nuclear injection (ICI-NT). Stepwise alterations in nuclear remodeling events and in mRNA abundances, throughput and efficiency of cloned embryo development and cell allocation of the resulted blastocysts were assessed. Early signs of nuclear remodeling were observed as soon as 2 h post-reconstitution (hpr) for fusion-based methods of nuclear transfer (ZI-NT and ZF-NT) but were not observable until 4 hpr with the ICI-NT method. The relative mRNA abundances ofHSP90AA1(HSP90),NPM2andATPasegenes were not affected by i) presence or absence of zona, ii) oocyte enucleation method and iii) nuclear transfer method. After reconstitution, however, the relative mRNA contents ofPOU5F1(OCT4) with the ZI-NT and ZF-NT methods and ofPAPOLA(PAP) with ZF-NT were significantly lower than those for the ICI-NT method. Zona removal doubled the throughput of cloned blastocyst development for the ZF-NT technique compared with ZI-NT and ICI-NT. Cleavage rate was not affected by the SCNT protocol, whereas blastocyst yield rate in ICI-NT technique (17.0±1.0%) was significantly (P<0.05; ANOVA) higher than in ZF-NT (7.1±1.5%) but not in the ZI-NT group (11.2±3.3%). Despite the similarities in total cell number, SCNT protocol changed the distribution of cells in the blastocysts, as ZF-NT-cloned blastocysts had significantly smaller inner cell mass than ZI-NT. These results indicate that technical aspects of cloning may result in the variety of cloning phenotypes.


2001 ◽  
Vol 276 (50) ◽  
pp. 47296-47302 ◽  
Author(s):  
Paola Scaffidi ◽  
Marco E. Bianchi

Sox proteins, a subclass of high mobility group box proteins, govern cell fate decisions by acting both as classical transcription factors and architectural components of chromatin. We aimed to demonstrate that the DNA bending activity of Sox proteins is essential to regulate gene expression. We focused on mouse Sox2, which participates in the transactivation of theFgf4(fibroblastgrowthfactor4) gene in the inner cell mass of the blastocyst. We generated six substitutions in the high mobility group box of Sox2. One mutant showed a reduced DNA bending activity on theFgf4enhancer (46° instead of 80°), which resulted in more powerful transactivation compared with the wild type protein. We then selected two single-base mutations in theFgf4enhancer that make the DNA less bendable by the Sox2 protein. Again, a different DNA bend (0° and 42° instead of 80°) resulted in a different activation of transcription, but in this case reduced bending corresponded to decreased transcription. We found that the opposite effect on transcription of similar DNA bending angles is due to a 20° difference in the relative orientation of the DNA bends, proving that a correct three-dimensional geometry of enhanceosome complexes is necessary to promote transcription.


Open Biology ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 160190 ◽  
Author(s):  
Vasanth Thamodaran ◽  
Alexander W. Bruce

During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well described. However, we report that p38 family mitogen-activated protein kinases (namely p38α/Mapk14 and p38β/Mapk11; referred to as p38-Mapk14/11) also participate in PrE formation. Specifically, functional p38-Mapk14/11 are required, during early-blastocyst maturation, to assist uncommitted ICM cells, expressing both EPI and earlier PrE markers, to fully commit to PrE differentiation. Moreover, functional activation of p38-Mapk14/11 is, as reported for Erk1/2, under the control of Fgf-receptor signalling, plus active Tak1 kinase (involved in non-canonical bone morphogenetic protein (Bmp)-receptor-mediated PrE differentiation). However, we demonstrate that the critical window of p38-Mapk14/11 activation precedes the E3.75 timepoint (defined by the initiation of the classical ‘salt and pepper’ expression pattern of mutually exclusive EPI and PrE markers), whereas appropriate lineage maturation is still achievable when Erk1/2 activity (via Mek1/2 inhibition) is limited to a period after E3.75. We propose that active p38-Mapk14/11 act as enablers, and Erk1/2 as drivers, of PrE differentiation during ICM lineage specification and segregation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pablo Bora ◽  
Lenka Gahurova ◽  
Tomáš Mašek ◽  
Andrea Hauserova ◽  
David Potěšil ◽  
...  

AbstractSuccessful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.


2016 ◽  
Author(s):  
Tapan Kumar Mistri ◽  
Wibowo Arindrarto ◽  
Wei Ping Ng ◽  
Choayang Wang ◽  
Leng Hiong Lim ◽  
...  

ABSTRACTOct4 and Sox2 regulate the expression of target genes such asNanog, Fgf4andUtf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerise on adjacentcisregulatory elements, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In this study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy (FCS). We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of theFgf4Sox/Oct motif. Taking into accountSox2expression levels fluctuate more thanOct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast (EPI) and primitive endoderm (PE) populations within the inner cell mass (ICM) of the developing rodent blastocyst.


Sign in / Sign up

Export Citation Format

Share Document