scholarly journals Gossypol biosynthesis in cotton revealed through organ culture, plant grafting and gene expression profiling

2017 ◽  
Author(s):  
Tianlun Zhao ◽  
Jiahui Hu ◽  
Cheng Li ◽  
Cong Li ◽  
Lei Mei ◽  
...  

AbstractGossypol plays an important role in defense mechanism of Gossypium species and the presence of gossypol also limits the utilization of cottonseeds. However, little is known about the metabolism of gossypol in cotton plant. Here, Detection on the dynamic tendency of gossypol content illustrated that at the germination stage, the main source of gossypol was cotyledon, and at the later stages, gossypol mainly came from root system. Plant grafting between cottons and sunflower proved that gossypol was mainly synthesized in the root systems of cotton plants and both of the glanded and glandless cottons had the ability of gossypol biosynthesis. Besides, the pigment glands expression was uncoupled with gossypol biosynthesis. Root tip and rootless seedling organ culture in vitro further revealed other parts of the seedlings also got the ability to synthesize gossypol except root system. Moreover, root system produced the racemic gossypol and plant synthesized the optically active gossypol. The expression profiling of key genes in the gossypol biosynthetic pathway suggested that downstream key genes had relatively high expression levels in root systems which confirmed that gossypol was mainly synthesized in the root systems. Taken together, our results helped to clarify the complex mechanism of gossypol metabolism.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 475A-475
Author(s):  
Kevin M. Crosby

Improving melon root systems by traditional breeding is one component of the program to develop multiple-stress-resistant melons at the Texas Agricultural Experiment Station, Weslaco. Ten diverse melon lines representing four horticultural groups were intercrossed utilizing a Design II mating scheme. The male parents were: `PI 403994,' `Perlita,' `Doublon,' `Caravelle', and `PI 525106.' The female parents were: `Créme de Menthe,' `Magnum 45,' `BSK,' `PI 124111 × TDI', and `Deltex.' F1 progeny were grown in pasteurized sand in the greenhouse using a randomized complete-block design with four reps. After 4 weeks, root systems from all plants were carefully washed to remove the sand. Each root system was then placed onto a glass, plated, and scanned into the computer software Rhizo Pro 3.8 (Regent Instruments, Quebec). This software calculated root lengths of various diameter classes, root area, and root tip number. All data was input into Agrobase software for calculation of genetic variances based on Design II analysis. Significant differences of contributions by male parents to progeny variation were few. Only length of roots with 1.0- to 1.5-mm-diameter and vine length were significantly different. Differences in contributions by female parents to all traits except root tip number were highly significant. No significant interaction effects were observed for any trait. Narrow-sense heritability estimates were moderate to high for all traits. The range was from 0.56 for root tip number by males to 0.81 for both length of 0.5- to 1.0-mm-diameter roots and vine length for females. Estimates for total root length (0.76) and root surface area (0.77) were high. The lack of male by female interaction suggests very low dominance genetic variation and contributed to high heritability estimates, which represent predominantly additive gene action. Additive genetic variation allows more-efficient progress by selection, making the potential for root system improvement favorable.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Iñigo Saiz-Fernández ◽  
Martin Černý ◽  
Jan Skalák ◽  
Břetislav Brzobohatý

Abstract Background Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. Results We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. Conclusions Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.


2020 ◽  
Author(s):  
P. De Bauw ◽  
J. A. Ramarolahy ◽  
K. Senthilkumar ◽  
T. Rakotoson ◽  
R. Merckx ◽  
...  

AbstractBackgroundBreeding towards resilient rice varieties is often constrained by the limited data on root system architecture obtained from relevant agricultural environments. Knowledge on the genotypic differences and responses of root architecture to environmental factors is limited due the difficulty of analysing soil-grown rice roots. An improved method using imaging is thus needed, but the existing methods were never proven successful for rice. Here, we aimed to evaluate and improve a higher throughput method of image-based root phenotyping for rice grown under field conditions. Rice root systems from seven experiments were phenotyped based on the “shovelomics” method of root system excavation followed by manual root phenotyping and digital root analysis after root imaging. Analyzed traits were compared between manual and image-based root phenotyping systems using Spearman rank correlations to evaluate whether both methods similarly rank the phenotypes. For each trait, the relative phenotypic variation was calculated. A principal component analysis was then conducted to assess patterns in root architectural variation.ResultsSeveral manually collected and image-based root traits were identified as having a high potential of differentiating among contrasting phenotypes, while other traits are found to be inaccurate and thus unreliable for rice. The image-based traits projected area, root tip thickness, stem diameter, and root system depth successfully replace the manual determination of root characteristics, however attention should be paid to the lower accuracy of the image-based methodology, especially when working with older and larger root systems.ConclusionsThe challenges and opportunities of rice root phenotyping in field conditions are discussed for both methods. We therefore propose an integrated protocol adjusted to the complexity of the rice root structure combining image analysis in a water bath and the manual scoring of three traits (i.e. lateral density, secondary branching degree, and nodal root thickness at the root base). The proposed methodology ensures higher throughput and enhanced accuracy during root phenotyping of soil grown rice in fields or pots compared to manual scoring only, it is cheap to develop and operate, it is valid in remote environments, and it enables fast data extraction.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S27-S40 ◽  
Author(s):  
T. Kobayashi ◽  
T. Kigawa ◽  
M. Mizuno ◽  
T. Watanabe

ABSTRACT There are several in vitro methods to analyse the function of the adenohypophysis or the mechanisms of its regulation. The present paper deals with single cell culture, organ culture and short term incubation techniques by which the morphology and gonadotrophin-secreting function of the adenohypophysis were studied. In trypsin-dispersed cell culture, the adenohypophysial cells showed extensive propagation to form numerous cell colonies and finally develop into a confluent monolayer cell sheet covering completely the surface of culture vessels. Almost all of the cultured cells, however, became chromophobic, at least at the end of the first week of cultivation, when gonadotrophin was detectable neither in the culture medium nor in the cells themselves. After the addition of the hypothalamic extract, gonadotrophin became detectable again, and basophilic or PAS-positive granules also reappeared within the cells, suggesting that the gonadotrophs were stimulated by the extract to produce gonadotrophin. In organ culture and short term incubation, the incorporation of [3H] leucine into the adenohypophysial cells in relation to the addition of hypothalamic extract was examined. It was obvious that the ability to incorporate [3H] leucine into the gonadotrophs in vitro was highly dependent upon the presence of the hypothalamic extract.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Pierre-Philippe Dechant

AbstractRecent work has shown that every 3D root system allows the construction of a corresponding 4D root system via an ‘induction theorem’. In this paper, we look at the icosahedral case of $$H_3\rightarrow H_4$$ H 3 → H 4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan–Dieudonné theorem, giving a simple construction of the $${\mathrm {Pin}}$$ Pin and $${\mathrm {Spin}}$$ Spin covers. Using this connection with $$H_3$$ H 3 via the induction theorem sheds light on geometric aspects of the $$H_4$$ H 4 root system (the 600-cell) as well as other related polytopes and their symmetries, such as the famous Grand Antiprism and the snub 24-cell. The uniform construction of root systems from 3D and the uniform procedure of splitting root systems with respect to subrootsystems into separate invariant sets allows further systematic insight into the underlying geometry. All calculations are performed in the even subalgebra of $${\mathrm {Cl}}(3)$$ Cl ( 3 ) , including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes, and are shared as supplementary computational work sheets. This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tina Unuk Nahberger ◽  
Gian Maria Niccolò Benucci ◽  
Hojka Kraigher ◽  
Tine Grebenc

AbstractSpecies of the genus Tuber have gained a lot of attention in recent decades due to their aromatic hypogenous fruitbodies, which can bring high prices on the market. The tendency in truffle production is to infect oak, hazel, beech, etc. in greenhouse conditions. We aimed to show whether silver fir (Abies alba Mill.) can be an appropriate host partner for commercial mycorrhization with truffles, and how earthworms in the inoculation substrate would affect the mycorrhization dynamics. Silver fir seedlings inoculated with Tuber. aestivum were analyzed for root system parameters and mycorrhization, how earthworms affect the bare root system, and if mycorrhization parameters change when earthworms are added to the inoculation substrate. Seedlings were analyzed 6 and 12 months after spore inoculation. Mycorrhization with or without earthworms revealed contrasting effects on fine root biomass and morphology of silver fir seedlings. Only a few of the assessed fine root parameters showed statistically significant response, namely higher fine root biomass and fine root tip density in inoculated seedlings without earthworms 6 months after inoculation, lower fine root tip density when earthworms were added, the specific root tip density increased in inoculated seedlings without earthworms 12 months after inoculation, and general negative effect of earthworm on branching density. Silver fir was confirmed as a suitable host partner for commercial mycorrhization with truffles, with 6% and 35% mycorrhization 6 months after inoculation and between 36% and 55% mycorrhization 12 months after inoculation. The effect of earthworms on mycorrhization of silver fir with Tuber aestivum was positive only after 6 months of mycorrhization, while this effect disappeared and turned insignificantly negative after 12 months due to the secondary effect of grazing on ectomycorrhizal root tips.


2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


Sign in / Sign up

Export Citation Format

Share Document