scholarly journals Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-visual photoreception

2017 ◽  
Author(s):  
Gilles Vandewalle ◽  
Markus J. van Ackeren ◽  
Véronique Daneault ◽  
Joseph T. Hull ◽  
Geneviève Albouy ◽  
...  

The discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) marked a major shift in our understanding of how light is processed by the mammalian brain. These ipRGCs influence multiple functions not directly related to vision such as the synchronization of circadian rhythmicity, pupil constriction, the regulation of alertness and sleep, as well as the modulation of cognition. More recently, it was demonstrated that ipRGCs may also contribute to basic visual functions. The impact of ipRGCs on visual functions, independently of image forming photoreceptors, remains however difficult to isolate, particularly in humans. We previously showed that exposure to intense monochromatic blue light (465nm) induced awareness of light in a forced choice task in three rare totally visually blind individuals without detectable rod and cone function, but who retained non-visual responses to light, very likely via ipRGCs. The neural foundation of such light awareness in the absence of conscious vision is unknown, however. In this study, we characterized the brain activity of these three rare participants using electroencephalography (EEG), and demonstrate that unconsciously perceived light triggers an early and reliable transient desynchronization (i.e. decreased power) of the alpha EEG rhythm (8-14 Hz) over the occipital cortex. These results provide compelling insight into how ipRGC may contribute to transient changes in ongoing brain activity. They suggest that occipital alpha rhythm synchrony, which is typically linked to the visual system, is modulated by ipRGCs photoreception; a process that may contribute to the awareness of light in those blind individuals.

2013 ◽  
Vol 25 (12) ◽  
pp. 2072-2085 ◽  
Author(s):  
Gilles Vandewalle ◽  
Olivier Collignon ◽  
Joseph T. Hull ◽  
Véronique Daneault ◽  
Geneviève Albouy ◽  
...  

Light regulates multiple non-image-forming (or nonvisual) circadian, neuroendocrine, and neurobehavioral functions, via outputs from intrinsically photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so light is an important regulator of wakefulness and cognition. The roles of rods, cones, and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose nonrandomly about the presence of light despite their complete lack of sight. Furthermore, 2 sec of blue light modified EEG activity when administered simultaneously to auditory stimulations. fMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function.


2018 ◽  
Author(s):  
Virginie Crollen ◽  
Latifa Lazzouni ◽  
Antoine Bellemare ◽  
Mohamed Rezk ◽  
Franco Lepore ◽  
...  

AbstractArithmetic reasoning activates the occipital cortex of early blind people (EB). This activation of visual areas may reflect functional flexibility or the intrinsic computational role of specific occipital regions. We contrasted these competing hypotheses by characterizing the brain activity of EB and sighted participants while performing subtraction, multiplication and a control verbal task. In both groups, subtraction selectively activated a bilateral dorsal network commonly activated during spatial processing. Multiplication triggered more activity in temporal regions thought to participate in memory retrieval. No between-group difference was observed for the multiplication task whereas subtraction induced enhanced activity in the right dorsal occipital cortex of the blind individuals only. As this area overlaps and exhibits increased functional connectivity with regions showing selective tuning to auditory spatial processing, our results suggest that the recruitment of occipital regions during high-level cognition in the blind actually relates to the intrinsic computational role of the reorganized regions.


2005 ◽  
Vol 14 (6) ◽  
pp. 306-311 ◽  
Author(s):  
Amir Amedi ◽  
Lotfi B. Merabet ◽  
Felix Bermpohl ◽  
Alvaro Pascual-Leone

Studying the brains of blind individuals provides a unique opportunity to investigate how the brain changes and adapts in response to afferent (input) and efferent (output) demands. We discuss evidence suggesting that regions of the brain normally associated with the processing of visual information undergo remarkable dynamic change in response to blindness. These neuroplastic changes implicate not only processing carried out by the remaining senses but also higher cognitive functions such as language and memory. A strong emphasis is placed on evidence obtained from advanced neuroimaging techniques that allow researchers to identify areas of human brain activity, as well as from lesion approaches (both reversible and irreversible) to address the functional relevance and role of these activated areas. A possible mechanism and conceptual framework for these physiological and behavioral changes is proposed.


2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176610 ◽  
Author(s):  
Min Sheng ◽  
Peiying Liu ◽  
Deng Mao ◽  
Yulin Ge ◽  
Hanzhang Lu

PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0218977
Author(s):  
Brunella Donno ◽  
Daniele Migliorati ◽  
Filippo Zappasodi ◽  
Mauro Gianni Perrucci ◽  
Marcello Costantini

Author(s):  
Adar Abdulkadir ◽  
Ibrahim J. Long

Canadian federal prison chaplaincy underwent a major shift in 2013 when the provision of its services was privatized and outsourced to a single for-profit company. This article presents a summary of the experiences and concerns expressed by minority faith chaplains serving in federal correctional institutions following privatization. It is based on ten in-depth, semi-structured interviews with minority faith prison chaplains. The results show that minority faith federal prison chaplains are concerned about increased levels of bureaucratization that have compromised the quality of spiritual care available to prisoners, reductions in resources for chaplains, and increased levels of emotional exhaustion and frustration among themselves and fellow minority faith chaplains serving in Canadian correctional facilities.


2018 ◽  
Vol 115 (50) ◽  
pp. E11817-E11826 ◽  
Author(s):  
Nina Milosavljevic ◽  
Riccardo Storchi ◽  
Cyril G. Eleftheriou ◽  
Andrea Colins ◽  
Rasmus S. Petersen ◽  
...  

Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain.


2015 ◽  
Vol 27 (8) ◽  
pp. 1633-1647 ◽  
Author(s):  
Ben Deen ◽  
Rebecca Saxe ◽  
Marina Bedny

In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.


2014 ◽  
Vol 111 (1) ◽  
pp. 112-127 ◽  
Author(s):  
L. Thaler ◽  
J. L. Milne ◽  
S. R. Arnott ◽  
D. Kish ◽  
M. A. Goodale

We have shown in previous research (Thaler L, Arnott SR, Goodale MA. PLoS One 6: e20162, 2011) that motion processing through echolocation activates temporal-occipital cortex in blind echolocation experts. Here we investigated how neural substrates of echo-motion are related to neural substrates of auditory source-motion and visual-motion. Three blind echolocation experts and twelve sighted echolocation novices underwent functional MRI scanning while they listened to binaural recordings of moving or stationary echolocation or auditory source sounds located either in left or right space. Sighted participants' brain activity was also measured while they viewed moving or stationary visual stimuli. For each of the three modalities separately (echo, source, vision), we then identified motion-sensitive areas in temporal-occipital cortex and in the planum temporale. We then used a region of interest (ROI) analysis to investigate cross-modal responses, as well as laterality effects. In both sighted novices and blind experts, we found that temporal-occipital source-motion ROIs did not respond to echo-motion, and echo-motion ROIs did not respond to source-motion. This double-dissociation was absent in planum temporale ROIs. Furthermore, temporal-occipital echo-motion ROIs in blind, but not sighted, participants showed evidence for contralateral motion preference. Temporal-occipital source-motion ROIs did not show evidence for contralateral preference in either blind or sighted participants. Our data suggest a functional segregation of processing of auditory source-motion and echo-motion in human temporal-occipital cortex. Furthermore, the data suggest that the echo-motion response in blind experts may represent a reorganization rather than exaggeration of response observed in sighted novices. There is the possibility that this reorganization involves the recruitment of “visual” cortical areas.


Sign in / Sign up

Export Citation Format

Share Document