scholarly journals Interleukin-1β and -6 release from immune cells by DOPA-based melanin as free pigment or complexed to carboxymethylcellulose

2017 ◽  
Author(s):  
Koen P. Vercruysse ◽  
Tonie S. Farris ◽  
Margaret M. Whalen

AbstractWe have observed that many polysaccharides can promote the oxidation of 3,4-dihydroxyphenylalanine (DOPA) into melanin-like pigments leading to the formation of water-soluble polysaccharide/melanin complexes. These pigments were characterized by size exclusion chromatography and FT-IR spectroscopy. The effect on the secretion of interleukin (IL)-lβ and IL-6 from immune cells by DOPA-based melanin synthesized in the presence or absence of carboxymethylcellulose (CMC) was evaluated. We observed that the melanin/CMC complex had a more potent effect on both IL secretions compared to the melanin prepared from DOPA in the absence of any polysaccharide. The study of the effect of melanins on the IL secretion by immune or other cells will help illuminate the potential contributions of this broad class of pigments to pathological conditions like Parkinson’s disease or ochronosis.

2018 ◽  
Author(s):  
Koen Vercruysse ◽  
Jayla Moore

This report expands our ongoing research efforts into the non-enzymatic synthesis of melanins. We have explored four different methods for the synthesis of L-DOPA based melanins and evaluated the reproducibility of some of their physic-chemical properties. The melanins were synthesized through the addition of NaOH, tyrosinate or Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub>. Two different approaches for the reactions involving Fe<sup>2+</sup> and H<sub>2</sub>O<sub>2</sub> were tested: a) addition of H<sub>2</sub>O<sub>2</sub> spread out over multiple days or b) addition of H<sub>2</sub>O<sub>2</sub> in one fraction at the start of the reaction. The physic-chemical properties of the melanins explored involved: 1) retention on size exclusion chromatography column, 2) FT-IR spectroscopy, 3) UV-Vis spectroscopy and 4) the capacity to reduce a redox dye, dichlorophenolindophenol. Overall the results obtained indicated that 1) the various synthesis methods lead to melanins with reproducible physic-chemical properties, 2) that the melanins synthesized in the presence of Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> are distinctly different from the melanins synthesized in the presence of NaOH or tyrosinate and 3) that no distinctly different melanins were generated when comparing the two different synthesis approaches involving Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub>. Only the melanins synthesized in the presence of Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> appeared to possess the capacity to reduce dichlorophenolindophenol.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 424
Author(s):  
Kristina L. Goranova ◽  
Anne Kathrine Kattenhøj Sloth Overgaard ◽  
Ivan Gitsov

This paper reports the creation of hydroxyapatite/polyester nanografts by “graft-from” polymerization of d,l-lactide with [Ca5(OH)(PO4)3]2 as the initiator and tin(II)-2-ethylhexanoate as the catalyst. Model polymerizations were performed with cyclooctanol as initiator to confirm the grafting on the surface of the hydroxyapatite nanocrystals. Polymers with the highest molecular mass (Mn) between 4250 Da (cyclooctanol) and 6100 Da (hydroxyapatite) were produced. In both cases the molecular mass distributions of the polymers formed were monomodal. The materials obtained were characterized by size-exclusion chromatography, NMR and FT-IR spectroscopy, and thermal methods. Their suitability as additives for commercial bone cement (Simplex P Speedset, Stryker Orthopaedics) has been confirmed by thermal analysis techniques and mechanical testing. The results obtained show that addition of the hydroxyapatite/ polyester nanografts improved both thermal and mechanical properties of the bone cement.


2018 ◽  
Author(s):  
Koen Vercruysse ◽  
Jayla Moore

This report expands our ongoing research efforts into the non-enzymatic synthesis of melanins. We have explored four different methods for the synthesis of L-DOPA based melanins and evaluated the reproducibility of some of their physic-chemical properties. The melanins were synthesized through the addition of NaOH, tyrosinate or Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub>. Two different approaches for the reactions involving Fe<sup>2+</sup> and H<sub>2</sub>O<sub>2</sub> were tested: a) addition of H<sub>2</sub>O<sub>2</sub> spread out over multiple days or b) addition of H<sub>2</sub>O<sub>2</sub> in one fraction at the start of the reaction. The physic-chemical properties of the melanins explored involved: 1) retention on size exclusion chromatography column, 2) FT-IR spectroscopy, 3) UV-Vis spectroscopy and 4) the capacity to reduce a redox dye, dichlorophenolindophenol. Overall the results obtained indicated that 1) the various synthesis methods lead to melanins with reproducible physic-chemical properties, 2) that the melanins synthesized in the presence of Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> are distinctly different from the melanins synthesized in the presence of NaOH or tyrosinate and 3) that no distinctly different melanins were generated when comparing the two different synthesis approaches involving Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub>. Only the melanins synthesized in the presence of Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> appeared to possess the capacity to reduce dichlorophenolindophenol.


2020 ◽  
Author(s):  
M Wee ◽  
M Mastrangelo ◽  
Susan Carnachan ◽  
Ian Sims ◽  
K Goh

A shear-thickening water-soluble polysaccharide was purified from mucilage extracted from the fronds of the New Zealand black tree fern (Cyathea medullaris or 'mamaku' in Māori) and its structure characterised. Constituent sugar analysis by three complementary methods, combined with linkage analysis (of carboxyl reduced samples) and 1H and 13C nuclear magnetic resonance spectroscopy (NMR) revealed a glucuronomannan comprising a backbone of 4-linked methylesterified glucopyranosyl uronic acid and 2-linked mannopyranosyl residues, branched at O-3 of 45% and at both O-3 and O-4 of 53% of the mannopyranosyl residues with side chains likely comprising terminal xylopyranosyl, terminal galactopyranosyl, non-methylesterified terminal glucopyranosyl uronic acid and 3-linked glucopyranosyl uronic acid residues. The weight-average molecular weight of the purified polysaccharide was ~1.9×106Da as determined by size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS). The distinctive rheological properties of this polysaccharide are discussed in relation to its structure. © 2014 Elsevier B.V.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sam Wong ◽  
Simone Alidori ◽  
Barbara P. Mello ◽  
Bryan Aristega Almeida ◽  
David Ulmert ◽  
...  

AbstractCellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.


Holzforschung ◽  
2013 ◽  
Vol 67 (2) ◽  
pp. 123-128
Author(s):  
Andréia S. Magaton ◽  
Teresa Cristina F. Silva ◽  
Jorge Luiz Colodette ◽  
Dorila Piló-Veloso ◽  
Flaviana Reis Milagres ◽  
...  

Abstract 4-O-methylglucuronoxylans isolated from Eucalyptus grandis and Eucalyptus urophylla kraft black liquors (KBLs) were chemically characterized by Fourier transform infrared spectroscopy (FT-IR), size exclusion chromatography (SEC), and nuclear magnetic resonance (NMR) spectroscopy. Doses of alkali charge, expressed as active alkali (AA), were 16, 17, and 18% while the sulfidity was kept at 25%. Kappa numbers of 19.1, 17.5, and 16.1 for E. grandis and 20.4, 16.8, and 15.4 for E. urophylla were obtained. At higher alkali charges, the recovery of xylans from the KBLs was lower and the degree of substitution of xylans with uronic acids decreased. The average molecular weight (Mw) of the recovered xylans was greater under conditions of mild pulping, i.e., in the case of pulps with higher kappa numbers. Mw of xylans ranged from 16.1 to 19.1 kDa for E. grandis and from 15.4 to 20.4 kDa for E. urophylla. The xylans from KBL may be useful as pulp modifying agents or as a raw material for advanced applications.


2001 ◽  
Vol 675 ◽  
Author(s):  
Jeong-Seo Park ◽  
Han-Chang Kang ◽  
Kurt E. Geckeler

ABSTRACTAs [60]fullerene is a very hydrophobic macromolecule, there have been a number of attempts to make it more hydrophilic for biomedical applications. By attaching hydrophilic moieties such as poly(oxyethylene)(POE) chains and cyclodextrin molecules to [60]fullerene, novel water-soluble and biocompatible materials have been successfully prepared [1,2].The synthesis of novel macrocyclic fullerene conjugates which are water-soluble is reported. The telechelic fullerene derivatives have been prepared via addition reaction of POE-based arms with covalently bonded β-cyclodextrin (CD) to [60]fullerene. To this end, a mono-tosylated CD derivative has been prepared in pyridine and then reacted with an amino-functional POE in the presence of triethylamine. The subsequent reaction of [60]fullerene with the hydrophilic POE-conjugated CD-derivative yielded the macrofullerene after separation and purification procedures.The macrocyclic [60]fullerene derivatives obtained were soluble in water and characterized by UV-VIS and FT-IR spectroscopy as well as light scattering measurements and thermogravimetric analysis.


2011 ◽  
Vol 236-238 ◽  
pp. 2045-2052 ◽  
Author(s):  
Qiao Wang ◽  
Jian Wang ◽  
Geng Zhong

Amorphophallus bulbifer (A. bulbifer) is a promising species in Amorphophallus sp., with great potentiality of developing, low risk for cultivation and considerable commercial benefits, mainly locates in tropical and subtropical regions or near the equator. Konjac glucomannan (KGM) is the main component of Amorphophallus tuber which is a water-soluble dietary fiber. In this work, some physiochemical properties of KGM in three Amorphophallus species flour [one was A.bulbifer, the other two were current main species namely Amorphophallus rivieri (A. rivieri) and Amorphophallus albus (A. albus)] were studied and compared with each other. The KGM content in A. rivieri, A. albus and A. bulbifer flour were 85.03%, 76.28% and 88.07% (w/w), respectively. The apparent viscosity, viscosity average molecular weight, whiteness, gel-forming properties and chemical structure of KGM in the three flours were investigated by using viscometer, colorimeter, texture analyzer and Fourier transform infrared (FT-IR) spectroscopy. The results indicated that the viscosity and Mw of A. bulbifer was the largest, gel strength was almost same (p>0.05) and the molecular structure were of no differences of three KGM. It may be proposed that transplanting A. bulbifer from its native land in the tropical and subtropical regions to temperate zone in the southwest part of China would be feasible, and it would cause the revolution of Amorphophallus sp. and more considerable benefits.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ruijun Wang ◽  
Yunfei Ji ◽  
Ying Peng ◽  
Xiaobo Li

Sijunzi decoction (SJZD) is a classical herbal prescription in traditional Chinese medicine (TCM) used for enhancing the function of immune system. In previous studies, a polysaccharide fraction S-3 was screened from SJZD by assessment of immune system regulation, intestinal microbiota, and SCFA in order to explore the immune active ingredients in SJZD. In the present study, S-3 was further purified, and a homogeneous polysaccharide S-3-1 with a molecular mass of 13.5 × 104 Da was obtained after further fractionation by Sephadex G-150 size-exclusion chromatography. The immunological activities of S-3-1 were assayed in vitro for the first time. The determination of the anticomplement activity showed that S-3-1 displayed inhibitory effects on classical pathway of the complement system, with CH50 values of 530 μg/mL. The FT-IR analysis showed that S-3-1 had absorptive peaks characteristic of polysaccharides. The methylation and GC-MS analysis showed that it is comprised of Rha, Ara, Xyl, Man, Gal, and Glc in a relative molar ratio of 0.35 : 0.37 : 1.4 : 0.31 : 3 : 0.8 and that it mainly contained 1,4-linked-Glc and 1,6-linked-Gal glycosidic bonds. The morphology of S-3-1 was observed by atomic force microscope (AFM). These results provided evidences for tracking the material basis of SJZD immune activity.


Holzforschung ◽  
2004 ◽  
Vol 58 (1) ◽  
pp. 97-104 ◽  
Author(s):  
B. Saake ◽  
S. Lebioda ◽  
J. Puls

Abstract Four methyl cellulose samples in the degree of substitution range from 0.5 to 2.0 were characterised by combination of different analytical methods. Samples were analysed regarding their partial degree of substitution by hydrolysis and anion exchange chromatography with pulsed amperometric detection. For calibration of the chromatographic system, standard substances were isolated by preparative HPLC and their structure was confirmed by 13C-NMR spectroscopy. For two methyl cellulose samples per-acetylation and 13C-NMR with inverse gated decoupling was carried out for comparison with the chromatographic analysis. Endoglucanase fragmentation of methyl celluloses was performed and water-soluble and insoluble fractions were analysed separately. A preparative size exclusion chromatography system for enzymatic-degraded water-soluble methyl cellulose was developed and the molar masses of the individual fractions were examined by analytical size exclusion chromatography. By combination of endoglucanase fragmentation, preparative chromatography, hydrolysis and anion exchange chromatography an approach for the analysis of the substitutent distribution along the polymeric chain of water-soluble methyl cellulose could be established.


Sign in / Sign up

Export Citation Format

Share Document