scholarly journals Cell competition, the kinetics of thymopoiesis and thymus cellularity are regulated by double negative 2 to 3 early thymocytes

Author(s):  
Camila V. Ramos ◽  
Luna Ballesteros-Arias ◽  
Joana G. Silva ◽  
Rafael A. Paiva ◽  
Marta F. Nogueira ◽  
...  

SUMMARYCell competition in the thymus is a homeostatic process that drives turnover. If the process is impaired, thymopoiesis can be autonomously maintained for several weeks, but this causes leukemia. We aimed to understand the impact of cell competition on thymopoiesis, identify the cells involved and determine how the process is regulated. Using thymus transplantation experiments we found that cell competition occurs within the double negative 2 (DN2) and 3 early (DN3e) thymocytes and inhibits thymus autonomy. Furthermore, the expansion of DN2b is regulated by a negative feedback loop imposed by double positive thymocytes and determines the kinetics of thymopoiesis. This feedback loop impacts on cell cycle duration of DN2b, in a response controlled by interleukin 7 availability. Altogether, we show that thymocytes do not merely follow a pre-determined path if provided with the correct signals. Instead, thymopoiesis dynamically integrates cell autonomous and non-cell autonomous aspects that fine-tune normal thymus function.

Cell Reports ◽  
2020 ◽  
Vol 32 (3) ◽  
pp. 107910
Author(s):  
Camila V. Ramos ◽  
Luna Ballesteros-Arias ◽  
Joana G. Silva ◽  
Rafael A. Paiva ◽  
Marta F. Nogueira ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4165-4172 ◽  
Author(s):  
Ivana Munitic ◽  
Joy A. Williams ◽  
Yili Yang ◽  
Bei Dong ◽  
Philip J. Lucas ◽  
...  

Abstract Interleukin-7 receptor (IL-7R) levels are tightly controlled during ontogeny: high on double-negative (DN) cells, absent on double-positive (DP) cells, and high once again on thymocytes undergoing positive selection. To determine if loss of IL-7–mediated survival signals in DP cells is necessary for normal antigen-specific selection, we created T-lineage–specific IL-7R α chain (IL-7Rα) transgenic (Tg) mice in which IL-7R is expressed throughout ontogeny. There was no effect of the IL-7Rα Tg on negative selection. Surprisingly, however, although the thymi of IL-7Rα Tg mice were comparable at birth, there was a decrease in thymocyte number as the mice aged. This was found to be due to competition between DN and IL-7R–expressing DP cells for endogenous IL-7, which resulted in decreased levels of Bcl-2 in DN cells, increased DN apoptosis, and decreased DN cell number. Therefore, the down-regulation of IL-7R on DP cells is an “altruistic” act required for maintaining an adequate supply of local IL-7 for DN cells.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 691
Author(s):  
Yugang Zhao ◽  
Zichao Zuo ◽  
Haibo Tang ◽  
Xin Zhang

Icing/snowing/frosting is ubiquitous in nature and industrial processes, and the accretion of ice mostly leads to catastrophic consequences. The existing understanding of icing is still limited, particularly for aircraft icing, where direct observation of the freezing dynamics is inaccessible. In this work, we investigate experimentally the impact and freezing of a water drop onto the supercooled substrate at extremely low vapor pressure, to mimic an aircraft passing through clouds at a relatively high altitude, engendering icing upon collisions with pendant drops. Special attention is focused on the ice coverage induced by an impinging drop, from the perimeter pointing outward along the radial direction. We observed two freezing regimes: (I) spread-recoil-freeze at the substrate temperature of Ts = −15.4 ± 0.2 °C and (II) spread (incomplete)-freeze at the substrate temperature of Ts = −22.1 ± 0.2 °C. The ice coverage is approximately one order of magnitude larger than the frozen drop itself, and counterintuitively, larger supercooling yields smaller ice coverage in the range of interest. We attribute the variation of ice coverage to the kinetics of vapor diffusion in the two regimes. This fundamental understanding benefits the design of new anti-icing technologies for aircraft.


2020 ◽  
Vol 27 (1) ◽  
pp. 204-215
Author(s):  
Hongkai Zhao ◽  
Dengchao Zhang ◽  
Yingshuang Li

AbstractIn this work, we modified nylon 6 with liquid rubber by in-situ polymerization. The infrared analysis suggested that HDI urea diketone is successfully blocked by caprolactam after grafting on hydroxyl of HTPB, and the rubber-modified nylon copolymer is generated by the anionic polymerization. The impact section analysis indicated the rubber-modified nylon 6 resin exhibited an alpha crystal form.With an increase in the rubber content, nylon 6 was more likely to generate stable α crystal. Avrami equation was a good description of the non-isothermal crystallization kinetics of nylon-6 and rubber-modified nylon-6 resin. Moreover, it is found that the initial crystallization temperature of nylon-6 chain segment decreased due to the flexible rubber chain segment. n value of rubber-modified nylon-6 indicated that its growth was the coexistence of two-dimensional discoid and three-dimensional spherulite growth. Finally, the addition of the rubber accelerated the crystallization rate of nylon 6.


2021 ◽  
Vol 22 (2) ◽  
pp. 518
Author(s):  
Adam James Ferrari ◽  
Ronny Drapkin ◽  
Rajan Gogna

Cell competition (CC) is a feature that allows tumor cells to outcompete and eliminate adjacent cells that are deemed less fit. Studies of CC, first described in Drosophila melanogaster, reveal a diversity of underlying mechanisms. In this review, we will discuss three recent studies that expand our understanding of the molecular features governing CC. In particular, we will focus on a molecular fitness fingerprint, oncogenic pathways, and the importance of cell junction stability. A fitness fingerprint, mediated by flower (hFWE) protein isoforms, dictates that cells expressing the flower-win isoforms will outcompete adjacent flower-loss-expressing cells. The impact of the flower protein isoforms is seen in cancer progression and may have diagnostic potential. The yes-associated protein (YAP) and TAZ transcription factors, central mediators of the oncogenic Hippo pathway, elevate peritumoral fitness thereby protecting against tumor progression and provide a suppressive barrier. Similarly, COL17A1 is a key component in hemidesmosome stability, and its expression in epidermal stem cells contributes to fitness competition and aging characteristics. The contributions of these pathways to disease development and progression will help define how CC is hijacked to favor cancer growth. Understanding these features will also help frame the diagnostic and therapeutic possibilities that may place CC in the crosshairs of cancer therapeutics.


Author(s):  
Ruiyang Miao ◽  
Lidong Shao ◽  
Richard G. Compton

AbstractThe mechanism and kinetics of the electro-catalytic oxidation of hydrazine by graphene oxide platelets randomly decorated with palladium nanoparticles are deduced using single particle impact electrochemical measurements in buffered aqueous solutions across the pH range 2–11. Both hydrazine, N2H4, and protonated hydrazine N2H5+ are shown to be electroactive following Butler-Volmer kinetics, of which the relative contribution is strongly pH-dependent. The negligible interconversion between N2H4 and N2H5+ due to the sufficiently short timescale of the impact voltammetry, allows the analysis of the two electron transfer rates from impact signals thus reflecting the composition of the bulk solution at the pH in question. In this way the rate determining step in the oxidation of each specie is deduced to be a one electron step in which no protons are released and so likely corresponds to the initial formation of a very short-lived radical cation either in solution or adsorbed on the platelet. Overall the work establishes a generic method for the elucidation of the rate determining electron transfer in a multistep process free from any complexity imposed by preceding or following chemical reactions which occur on the timescale of conventional voltammetry.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102104
Author(s):  
Yunjin Song ◽  
Hoibin Jeong ◽  
Song-Rae Kim ◽  
Yiseul Ryu ◽  
Jonghwi Baek ◽  
...  

Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 331-363
Author(s):  
Eugeniy Lantcev ◽  
Aleksey Nokhrin ◽  
Nataliya Malekhonova ◽  
Maksim Boldin ◽  
Vladimir Chuvil'deev ◽  
...  

This study investigates the impact of carbon on the kinetics of the spark plasma sintering (SPS) of nano- and submicron powders WC-10wt.%Co. Carbon, in the form of graphite, was introduced into powders by mixing. The activation energy of solid-phase sintering was determined for the conditions of isothermal and continuous heating. It has been demonstrated that increasing the carbon content leads to a decrease in the fraction of η-phase particles and a shift of the shrinkage curve towards lower heating temperatures. It has been established that increasing the graphite content in nano- and submicron powders has no significant effect on the SPS activation energy for “mid-range” heating temperatures, QS(I). The value of QS(I) is close to the activation energy of grain-boundary diffusion in cobalt. It has been demonstrated that increasing the content of graphite leads to a significant decrease in the SPS activation energy, QS(II), for “higher-range” heating temperatures due to lower concentration of tungsten atoms in cobalt-based γ-phase. It has been established that the sintering kinetics of fine-grained WC-Co hard alloys is limited by the intensity of diffusion creep of cobalt (Coble creep).


Sign in / Sign up

Export Citation Format

Share Document