scholarly journals Citrullination regulates wound responses and tissue regeneration in zebrafish

2019 ◽  
Author(s):  
Netta Golenberg ◽  
Jayne M. Squirrell ◽  
David A. Bennin ◽  
Julie Rindy ◽  
Paige E. Pistono ◽  
...  

AbstractCalcium signaling is an important early step in wound healing, yet how these early signals promote regeneration remains unclear. Peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes, catalyze citrullination, a post-translational modification that alters protein function and has been implicated in autoimmune diseases. We generated a mutation in the single zebrafish ancestral pad gene, padi2, resulting in a loss of detectable calcium-dependent citrullination. The padi2 mutants exhibit impaired resolution of inflammation and regeneration after caudal fin transection. Further, we identified a new subpopulation of cells displaying citrullinated histones within the notochord bead following tissue injury. Citrullination of histones in this region was absent and wound-induced proliferation was perturbed in Padi2-deficient larvae. Taken together, our results show that Padi2 is required for the citrullination of histones within a group of cells in the notochord bead, and for promoting wound-induced proliferation required for efficient regeneration. These findings identify Padi2 as a potential intermediary between early calcium signaling and subsequent tissue regeneration.SummaryGolenberg et al. developed a citrullination-deficient zebrafish and demonstrated a role for Padi2 in fin wound responses and regeneration. This work identified a distinct population of cells within the regenerative notochord bead that exhibited wound-induced histone citrullination.

2020 ◽  
Vol 219 (4) ◽  
Author(s):  
Netta Golenberg ◽  
Jayne M. Squirrell ◽  
David A. Bennin ◽  
Julie Rindy ◽  
Paige E. Pistono ◽  
...  

Calcium is an important early signal in wound healing, yet how these early signals promote regeneration remains unclear. Peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes, catalyze citrullination, a post-translational modification that alters protein function and has been implicated in autoimmune diseases. We generated a mutation in the single zebrafish ancestral pad gene, padi2, that results in a loss of detectable calcium-dependent citrullination. The mutants exhibit impaired resolution of inflammation and regeneration after caudal fin transection. We identified a new subpopulation of cells displaying citrullinated histones within the notochord bead following tissue injury. Citrullination of histones in this region was absent, and wound-induced proliferation was perturbed in Padi2-deficient larvae. Taken together, our results show that Padi2 is required for the citrullination of histones within a group of cells in the notochord bead and for promoting wound-induced proliferation required for efficient regeneration. These findings identify Padi2 as a potential intermediary between early calcium signaling and subsequent tissue regeneration.


2012 ◽  
Vol 199 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Sa Kan Yoo ◽  
Christina M. Freisinger ◽  
Danny C. LeBert ◽  
Anna Huttenlocher

Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H2O2 at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H2O2. A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration.


2012 ◽  
Vol 140 (5) ◽  
pp. i7-i7
Author(s):  
Sa Kan Yoo ◽  
Christina M. Freisinger ◽  
Danny C. LeBert ◽  
Anna Huttenlocher

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. K. Rout ◽  
M. Verma

AbstractGoat milk is a source of nutrition in difficult areas and has lesser allerginicity than cow milk. It is leading in the area for nutraceutical formulation and drug development using goat mammary gland as a bioreactor. Post translational modifications of a protein regulate protein function, biological activity, stabilization and interactions. The protein variants of goat milk from 10 breeds were studied for the post translational modifications by combining highly sensitive 2DE and Q-Exactive LC-MS/MS. Here we observed high levels of post translational modifications in 201 peptides of 120 goat milk proteins. The phosphosites observed for CSN2, CSN1S1, CSN1S2, CSN3 were 11P, 13P, 17P and 6P, respectively in 105 casein phosphopeptides. Whey proteins BLG and LALBA showed 19 and 4 phosphosites respectively. Post translational modification was observed in 45 low abundant non-casein milk proteins mainly associated with signal transduction, immune system, developmental biology and metabolism pathways. Pasp is reported for the first time in 47 sites. The rare conserved peptide sequence of (SSSEE) was observed in αS1 and αS2 casein. The functional roles of identified phosphopeptides included anti-microbial, DPP-IV inhibitory, anti-inflammatory and ACE inhibitory. This is first report from tropics, investigating post translational modifications in casein and non-casein goat milk proteins and studies their interactions.


2020 ◽  
Vol 21 (22) ◽  
pp. 8746
Author(s):  
Julie Briot ◽  
Michel Simon ◽  
Marie-Claire Méchin

Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes.


2018 ◽  
Author(s):  
Yanhui Hu ◽  
Richelle Sopko ◽  
Verena Chung ◽  
Romain A. Studer ◽  
Sean D. Landry ◽  
...  

AbstractPost-translational modification (PTM) serves as a regulatory mechanism for protein function, influencing stability, protein interactions, activity and localization, and is critical in many signaling pathways. The best characterized PTM is phosphorylation, whereby a phosphate is added to an acceptor residue, commonly serine, threonine and tyrosine. As proteins are often phosphorylated at multiple sites, identifying those sites that are important for function is a challenging problem. Considering that many phosphorylation sites may be non-functional, prioritizing evolutionarily conserved phosphosites provides a general strategy to identify the putative functional sites with regards to regulation and function. To facilitate the identification of conserved phosphosites, we generated a large-scale phosphoproteomics dataset from Drosophila embryos collected from six closely-related species. We built iProteinDB (https://www.flyrnai.org/tools/iproteindb/), a resource integrating these data with other high-throughput PTM datasets, including vertebrates, and manually curated information for Drosophila. At iProteinDB, scientists can view the PTM landscape for any Drosophila protein and identify predicted functional phosphosites based on a comparative analysis of data from closely-related Drosophila species. Further, iProteinDB enables comparison of PTM data from Drosophila to that of orthologous proteins from other model organisms, including human, mouse, rat, Xenopus laevis, Danio rerio, and Caenorhabditis elegans.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Madeleine R Miles ◽  
John Seo ◽  
Zachary Wilson ◽  
Min Jiang ◽  
Gea-ny Tseng

Introduction: More that 10% of human proteins can be S-palmitoylated, a post-translational modification (PTM) whereby palmitoyl chains are covalently linked to cysteine thiol groups. S-palmitoylation influences protein trafficking, distribution and function. There is no information on the scope of protein S-palmitoylation in the heart, or how this enzyme-mediated reversible PTM is regulated. Hypothesis: S-palmitoylation occurs to a wide spectrum of proteins in cardiomyocytes, and is coordinated by membrane-embedded palmitoylating (DHHC) enzymes. DHHC enzymes are subject to remodeling during chronic hypertension. Methods: We used resin-assisted capture to purify S-palmitoylated proteins from ventricular myocardium of 3 species: human, dog, and rat. We used global unbiased proteomic search to identify S-palmitoylated proteins. We validated DHHC antibodies and used them to monitor protein level and subcellular distribution of native DHHC enzymes in ventricular myocytes. Results: We built a 'composite' cardiac palmitome composed of 462 S-palmitoylatable proteins identified in ≥ 2 species-specific cardiac palmitomes. Enrichment analysis based on GO term 'cellular component' indicated that they are mainly involved in cell-cell and cell-substrate associations, sarcolemma and sarcomere organization, vesicular trafficking, G-protein function, ATP-dependent transmembrane transport, and mitochondria inner and outer membrane organization. Among the 23 DHHC enzymes, we detected ten in hearts across species. In ventricular myocytes with well-defined subcellular compartments, DHHC enzymes exhibited distinct distribution patterns: peripheral sarcolemma (DHHC1), M-lines (DHHC2), Z-lines (DHHC5), vesicles (DHHC7) and intercalated disc (DHHC9). In aging spontaneously hypertensive rats (a model of chronic hypertension, some in heart failure), seven DHHC enzymes were upregulated in the heart, accompanied by a higher degree of S-palmitoylation of CaMK II, caveolin3, Na/Ca exchanger, and Na/K pump α-subunit. Conclusion: S-palmitoylation is involved in most, if not all, aspects of cardiomyocyte function. Palmitoylation dysregulation may contribute to pathological progression in hypertrophy leading to heart failure.


Author(s):  
Tanaya Roychowdhury ◽  
Samit Chattopadhyay

Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.


2005 ◽  
Vol 33 (6) ◽  
pp. 1385-1389 ◽  
Author(s):  
J.W. Zmijewski ◽  
A. Landar ◽  
N. Watanabe ◽  
D.A. Dickinson ◽  
N. Noguchi ◽  
...  

The controlled formation of ROS (reactive oxygen species) and RNS (reactive nitrogen species) is now known to be critical in cellular redox signalling. As with the more familiar phosphorylation-dependent signal transduction pathways, control of protein function is mediated by the post-translational modification at specific amino acid residues, notably thiols. Two important classes of oxidant-derived signalling molecules are the lipid oxidation products, including those with electrophilic reactive centres, and decomposition products such as lysoPC (lysophosphatidylcholine). The mechanisms can be direct in the case of electrophiles, as they can modify signalling proteins by post-translational modification of thiols. In the case of lysoPC, it appears that secondary generation of ROS/RNS, dependent on intracellular calcium fluxes, can cause the secondary induction of H2O2 in the cell. In either case, the intracellular source of ROS/RNS has not been defined. In this respect, the mitochondrion is particularly interesting since it is now becoming apparent that the formation of superoxide from the respiratory chain can play an important role in cell signalling, and oxidized lipids can stimulate ROS formation from an undefined source. In this short overview, we describe recent experiments that suggest that the cell signalling mediated by lipid oxidation products involves their interaction with mitochondria. The implications of these results for our understanding of adaptation and the response to stress in cardiovascular disease are discussed.


Sign in / Sign up

Export Citation Format

Share Document