scholarly journals Cancer Cell Intrinsic Expression of MHCII Regulates the Immune Microenvironment and Response to Anti-PD-1 Therapy in Lung Adenocarcinoma

2020 ◽  
Author(s):  
Amber M. Johnson ◽  
Bonnie L. Bullock ◽  
Alexander J. Neuwelt ◽  
Joanna M. Poczobutt ◽  
Rachael E. Kaspar ◽  
...  

AbstractMHC class II (MHCII) expression is usually restricted to antigen presenting cells, but can be expressed by cancer cells. We examined the effect of cancer cell-intrinsic MHC class II (csMHCII) expression in lung adenocarcinoma on T cell recruitment to tumors and response to anti-PD-1 therapy. The functional significance of altering csMHCII expression was explored using two orthotopic immunocompetent murine models of non-small cell lung cancer: CMT167 (CMT) and Lewis Lung Carcinoma (LLC). We previously showed that CMT167 tumors are eradicated by anti-PD1 therapy, while LLC tumors are resistant. RNA-seq analysis of cancer cells recovered from tumors revealed that csMHCII correlated with response to anti-PD1 therapy, with immunotherapy-sensitive CMT167 cells being csMHCII positive, while resistant LLC cells were csMHCII negative. To test the functional effects of csMHCII, MHCII expression was altered on the cancer cells through loss- and gain-of-function of CIITA, a master regulator of the MHCII pathway. Loss of CIITA in CMT167 decreased csMHCII, and converted tumors from anti-PD-1-sensitive to anti-PD-1-resistant. This was associated with decreased T cell infiltration, lower levels of Th1 cytokines, increased B cell number and decreased macrophage recruitment. Conversely, overexpression of CIITA in LLC cells resulted in csMHCII in vitro and in vivo. Enforced expression of CIITA increased T cell infiltration and sensitized tumors to anti-PD-1 therapy. csMHCII expression was also examined in a subset of surgically resected human lung adenocarcinomas by multispectral imaging, provided a survival benefit and positively correlated with T cell infiltration. These studies demonstrate a functional role for csMHCII in regulating T cell infiltration and sensitivity to anti-PD-1.

2017 ◽  
Vol 7 (3) ◽  
pp. e1404213 ◽  
Author(s):  
Nada Chaoul ◽  
Alexandre Tang ◽  
Belinda Desrues ◽  
Marine Oberkampf ◽  
Catherine Fayolle ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria-Fernanda Senosain ◽  
Yong Zou ◽  
Tatiana Novitskaya ◽  
Georgii Vasiukov ◽  
Aneri B. Balar ◽  
...  

AbstractLung adenocarcinoma (ADC) is a heterogeneous group of tumors associated with different survival rates, even when detected at an early stage. Here, we aim to investigate whether CyTOF identifies cellular and molecular predictors of tumor behavior. We developed and validated a CyTOF panel of 34 antibodies in four ADC cell lines and PBMC. We tested our panel in a set of 10 ADCs, classified into long- (LPS) (n = 4) and short-predicted survival (SPS) (n = 6) based on radiomics features. We identified cellular subpopulations of epithelial cancer cells (ECC) and their microenvironment and validated our results by multiplex immunofluorescence (mIF) applied to a tissue microarray (TMA) of LPS and SPS ADCs. The antibody panel captured the phenotypical differences in ADC cell lines and PBMC. LPS ADCs had a higher proportion of immune cells. ECC clusters (ECCc) were identified and uncovered two ADC groups. ECCc with high HLA-DR expression were correlated with CD4+ and CD8+ T cells, with LPS samples being enriched for those clusters. We confirmed a positive correlation between HLA-DR expression on ECC and T cell number by mIF staining on TMA slides. Spatial analysis demonstrated shorter distances from T cells to the nearest ECC in LPS. Our results demonstrate a distinctive cellular profile of ECC and their microenvironment in ADC. We showed that HLA-DR expression in ECC is correlated with T cell infiltration, and that a set of ADCs with high abundance of HLA-DR+ ECCc and T cells is enriched in LPS samples. This suggests new insights into the role of antigen presenting tumor cells in tumorigenesis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Annemarie Noordeloos ◽  
Elza van Deel ◽  
Denise Hermes ◽  
Maarten L Simoons ◽  
Dirk J Duncker ◽  
...  

Introduction: Although expression of heme oxygenase-1 (HO1) attenuates transplantation arteriosclerosis, the mechanism by which HO1 exerts its protective effect remains unclear. We studied the effect of HO1-deficient vs. wildtype (WT) dendritic cells (DCs) on the T-cell priming response and outcome in a murine transplant arteriosclerosis model. Methods: At day 0 C57bl6 mice received either WT (n=6) or HO1-knockout DCs (n=6) pre-sensitized with Balb/c splenocytes lysate to accelerate the development of arteriosclerosis. At day 10 an aorta segment from Balb/c mice was transplanted into the carotid artery position of C57Bl6 mice.14 days after transplantation allografts were excised and processed for immunohistochemical analysis. Results: HO1-deficient DCs significantly increased neointimal hyperplasia as compared to WT DCs (116995 vs. 46114μm 2 P<0.05) and incidence of intima formation (83 vs. 50% in WT DC). HO1 deficient DCs also increased medial thickeness (15936 vs.12034 μm 2 P<0.05) and intimal VSMCs content (76 vs. 46% P<0.05) and resulted in more prominent medial cell infiltration (461μm 2 vs. 232μm 2 P<0.05). Although HO1 deficient and WT DCs could be detected in allografts, HO1-nullizygous DCs induced an increase in CD4+ T-cell infiltration (9.5 vs. 0.1% in WT P<0.05) concomitant to a decrease of CD8+ T cell infiltration (8 vs.14%, P<0.05). In line with these observations Affymetrix microarray analysis confirmed that HO1 deletion in DCs was associated with a significant downregulation of MHCII-H2A expression (associated with CD4+T-cell activation) and induction of inhibitors of MHCII expression (including IK protein) whereas MHC I expression remained unchanged. Conclusions: HO1 expression in dendritic cells increases vascular cell infiltration with a higher CD8+/CD4+ T-cell ratio by stabilizing MHCII expression in vascular allografts resulting in inhibition of neointima formation and hence improved allograft survival.


2020 ◽  
Vol 204 (8) ◽  
pp. 2295-2307 ◽  
Author(s):  
Amber M. Johnson ◽  
Bonnie L. Bullock ◽  
Alexander J. Neuwelt ◽  
Joanna M. Poczobutt ◽  
Rachael E. Kaspar ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Guohao Wang ◽  
Junji Xu ◽  
Jiangsha Zhao ◽  
Weiqin Yin ◽  
Dayong Liu ◽  
...  

AbstractCancer stem cells (CSCs) may be responsible for treatment resistance, tumor metastasis, and disease recurrence. Here we demonstrate that the Arf1-mediated lipid metabolism sustains cells enriched with CSCs and its ablation induces anti-tumor immune responses in mice. Notably, Arf1 ablation in cancer cells induces mitochondrial defects, endoplasmic-reticulum stress, and the release of damage-associated molecular patterns (DAMPs), which recruit and activate dendritic cells (DCs) at tumor sites. The activated immune system finally elicits antitumor immune surveillance by stimulating T-cell infiltration and activation. Furthermore, TCGA data analysis shows an inverse correlation between Arf1 expression and T-cell infiltration and activation along with patient survival in various human cancers. Our results reveal that Arf1-pathway knockdown not only kills CSCs but also elicits a tumor-specific immune response that converts dying CSCs into a therapeutic vaccine, leading to durable benefits.


Sign in / Sign up

Export Citation Format

Share Document