scholarly journals A susceptibility locus on chromosome 13 profoundly impacts the stability of genomic imprinting in mouse pluripotent stem cells

2020 ◽  
Author(s):  
Emily Swanzey ◽  
Thomas F. McNamara ◽  
Effie Apostolou ◽  
Mamta Tahiliani ◽  
Matthias Stadtfeld

SummaryCultured pluripotent cells accumulate detrimental epigenetic alterations, including DNA methylation changes at imprinted genes known as loss-of-imprinting (LOI). Despite the substantial biomedical relevance of this phenomenon, the molecular cause of this epigenetic instability in pluripotent cells remains unknown. While the occurrence of LOI is generally considered a stochastic phenomenon, here we document a strong genetic determinant that segregates mouse pluripotent cells into epigenetically stable and unstable cell lines. Unstable lines exhibit hypermethylation at Dlk1-Dio3 and select other imprinted loci, which is associated with impaired developmental potential. Stimulation of demethylases by ascorbic acid prevents LOI and can preserve developmental potential. Susceptibility to LOI greatly differs between commonly used mouse strains, which we utilize to map a causal region on chromosome 13 with Quantitative Trait Locus (QTL) analysis. Our observations identify a strong genetic determinant of locus-specific epigenetic abnormalities in pluripotent cells and provide a non-invasive way to suppress them. This highlights the importance of considering genetics in conjunction with culture conditions for assuring the quality of pluripotent cells for biomedical applications.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2169
Author(s):  
Agnieszka Tabaczyńska ◽  
Anna Dąbrowska ◽  
Marcin Masłowski ◽  
Anna Strąkowska

Electro-conductive paths that are mechanically resistant and stable during simulated aging cycles are promising, in relation to the non-invasive application in e-textiles in our everyday surroundings. In the paper, an analysis of the influence of electro-conductive filler, as well as ionic liquid on surface resistance is provided. Authors proved that depending on the tested variant, obtained surface resistance may vary from 50 kΩ (when 50 phr of Ag and [bmim][PF6] ionic liquid applied) to 26 GΩ (when 25 phr of Ag and [bmim][PF6] ionic liquid applied). The samples were also evaluated after simulated aging cycles and the stability of electric properties was confirmed. Moreover, it was proved that the addition of ionic liquids reduced the resistance of vulcanizates, while no significant influence of the extrusion process on conductivity was observed.


2020 ◽  
Vol 22 (1) ◽  
pp. 214
Author(s):  
Michelle A. Fisher ◽  
Megan L. Lloyd

Since murine cytomegalovirus (MCMV) was first described in 1954, it has been used to model human cytomegalovirus (HCMV) diseases. MCMV is a natural pathogen of mice that is present in wild mice populations and has been associated with diseases such as myocarditis. The species-specific nature of HCMV restricts most research to cell culture-based studies or to the investigation of non-invasive clinical samples, which may not be ideal for the study of disseminated disease. Initial MCMV research used a salivary gland-propagated virus administered via different routes of inoculation into a variety of mouse strains. This revealed that the genetic background of the laboratory mice affected the severity of disease and altered the extent of subsequent pathology. The advent of genetically modified mice and viruses has allowed new aspects of disease to be modeled and the opportunistic nature of HCMV infection to be confirmed. This review describes the different ways that MCMV has been used to model HCMV diseases and explores the continuing difficulty faced by researchers attempting to model HCMV congenital cytomegalovirus disease using the mouse model.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1434-1442 ◽  
Author(s):  
Ryan K. Funk ◽  
Taylor J. Maxwell ◽  
Masayo Izumi ◽  
Deepa Edwin ◽  
Friederike Kreisel ◽  
...  

Abstract Therapy-related acute myelogenous leukemia (t-AML) is an important late adverse effect of alkylator chemotherapy. Susceptibility to t-AML has a genetic component, yet specific genetic variants that influence susceptibility are poorly understood. We analyzed an F2 intercross (n = 282 mice) between mouse strains resistant or susceptible to t-AML induced by the alkylator ethyl-N-nitrosourea (ENU) to identify genes that regulate t-AML susceptibility. Each mouse carried the hCG-PML/RARA transgene, a well-characterized initiator of myeloid leukemia. In the absence of ENU treatment, transgenic F2 mice developed leukemia with higher incidence (79.4% vs 12.5%) and at earlier time points (108 days vs 234 days) than mice in the resistant background. ENU treatment of F2 mice further increased incidence (90.4%) and shortened median survival (171 vs 254 days). We genotyped F2 mice at 384 informative single nucleotide polymorphisms across the genome and performed quantitative trait locus (QTL) analysis. Thirteen QTLs significantly associated with leukemia-free survival, spleen weight, or white blood cell count were identified on 8 chromosomes. These results suggest that susceptibility to ENU-induced leukemia in mice is a complex trait governed by genes at multiple loci. Improved understanding of genetic risk factors should lead to tailored treatment regimens that reduce risk for patients predisposed to t-AML.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
E Mestres ◽  
Q Matia-Algué ◽  
A Villamar ◽  
M García-Jiménez ◽  
A Casals ◽  
...  

Abstract Study question Do commercial mineral oil brands differ in their capacity to stabilize the human embryo culture system, and is this related to the oil’s viscosity? Summary answer While the oils’ viscosity only had minor effects on temperature maintenance, it showed a direct correlation with the stability of pH and osmolality during culture. What is known already Mineral oil is a key component of the in vitro embryo culture system, which stabilizes temperature, pH and osmolality of the media during culture. Its use has been implemented worldwide for several decades and many manufacturers currently produce and commercialize oil intended for human embryo culture. Unfortunately, oil remains as one of the less characterized products in the IVF laboratory due to a lack of standardized nomenclature, production and testing. With differing physico-chemical properties, such as viscosity, oils produced by various manufacturers could behave differently to the same culture conditions and, thus, its use may need to be adjusted accordingly. Study design, size, duration Viscosity was quantified in three high-viscosity (H-V) and three low-viscosity (L-V) oils with a viscosity-meter. The required time for media’s pH to equilibrate using each oil was studied, as well as its subsequent stability outside the incubator for 30min. In-drop temperature was assessed during 15min when taking a dish outside the incubator, and again when putting it back. Additionally, each oil’s capacity to avoid media evaporation was studied with daily osmolality measurements during 7 days. Participants/materials, setting, methods pH equilibration was measured with a continuous pHmeter (Log&Guard, Vitrolife) in 4-well dishes prepared with 600µl of medium and 500µl of oil. For the other experiments, 35mm dishes with 4ml of oil and 20µl media droplets were used. pH stability was assessed after 0, 15 and 30min outside the incubator with a blood-gas-analyzer (epoc,SiemensHelthineers). A fine-gauge thermocouple was used to measure in-drop temperature loss/recovery. Daily osmolality readings were taken with a vapor pressure osmometer (Vapro5600,Wescor). Main results and the role of chance The selected oil samples had a viscosity of 115, 111, 52, 22, 18, and 12cP. The medium’s pH took approximately 12h to completely equilibrate under H-V oils, while it took less than 4h in L-V. Similarly, the rise in pH after 30min on a heated stage outside of the incubator with room atmosphere was 0.03, 0.04, 0.06, 0.13, 0.17, and 0.26, respectively. Dishes were taken out of the incubator and placed on a heated surface. In the first five minutes, the in-drop temperature loss ranged between –0.22 and –0.13oC/min, with no significant differences observed between oil types. However, temperature plateaued at a significantly higher value in L-V oils (36.5oC), compared to H-V brands (36.25–36.1oC; p = 0.0005). By contrast, all samples followed a similar pattern when the dishes were returned to the benchtop incubator, with temperature taking around 7 minutes to completely recover. Some media evaporated in all oil groups during the 7-day culture in a dry benchtop incubator. The linear regression performed to compare the evaporation rate between groups showed a statistically significant correlation between oil viscosity and the rate of evaporation (p < 0.0001), with an osmolality rise ranging between +2.55mmol/kg/day in the most viscous oil and +6.29mmol/kg/day in the least viscous. Limitations, reasons for caution While the selected oils for this study represent a wide range of options in the market, future projects could widen this selection and include additional tests, such as optimized bioassays. Results may vary between centers, and thus each laboratory should test and optimize their culture system with their own settings. Wider implications of the findings: Different oil brands have shown differing physico-chemical properties that have a direct effect on the culture system and the stability of several culture conditions. These results may be of major importance to adapt the settings and methodologies followed in each IVF laboratory according to the type of oil being used. Trial registration number Not applicable


1995 ◽  
Vol 10 (7) ◽  
pp. 1810-1815 ◽  
Author(s):  
Ricardo T. Serta ◽  
Jiannis Michalopoulos ◽  
Machelle M. Seibel ◽  
Ann A. Kiessling

Cell Reports ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 3597-3604.e3 ◽  
Author(s):  
Emily Swanzey ◽  
Thomas F. McNamara ◽  
Effie Apostolou ◽  
Mamta Tahiliani ◽  
Matthias Stadtfeld

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1476 ◽  
Author(s):  
Sara El Moshy ◽  
Marwa M.S. Abbass ◽  
Amal M. El-Motayam

Background: Minimally invasive dentistry aims to prevent progression of caries and treats non-cavitated lesions through non-invasive approaches to preserve the integrity of tooth structure. The aim of this research was to investigate the possible biomimetic effect of agarose hydrogel in remineralizing a human demineralized enamel model. Methods: Mandibular third molars were distributed into three groups (G1, G2 and G3) according to the follow up time (2, 4 and 6 days respectively). Caries like lesion was prepared by applying 37% phosphoric acid gel for 1 minute and then remineralization was performed through applying agarose hydrogel on the demineralized surfaces. The specimens were placed in phosphate solution at 37˚C for 2, 4 & 6 days. Scanning electron microscope (SEM), surface microhardness (SMH) and surface roughness analysis (SR) were performed to assess the regenerated tissue. Results: SEM revealed mineral depositions on the demineralized enamel surface that increased in density by time resulting in a relatively smooth surface in G3. SR and SMH analysis revealed significant differences between the remineralized enamel surfaces of different groups (p< 0.00001) with the highest SR in G1 and the highest SMH in G3. Conclusions: Agarose hydrogel application is a promising approach to treat early carious lesion. Further studies are needed to clarify the stability of agarose hydrogels in clinical application.


2015 ◽  
Vol 95 (1) ◽  
pp. 245-295 ◽  
Author(s):  
Kyle M. Loh ◽  
Bing Lim ◽  
Lay Teng Ang

Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.


2008 ◽  
Vol 20 (1) ◽  
pp. 133
Author(s):  
M. Katayama ◽  
R. M. Roberts

Fertile adults and occasionally twins have been derived from murine blastomeres at the 2-cell stage, indicating that such blastomeres may be equivalently totipotent, but there are conflicting reports that individual blastomeres from 2-cell stage murine conceptuses make different contributions to the embryonic and abembryonic regions of the blastocyst, implying that they differ in developmental potential. Here, we have re-examined this subject using 2 mouse strains, CF1 and NIH Swiss (SW), and 2 experimental approaches, random blastomere destruction at the 2-cell stage by repeated insertion of a needle into its nucleus and lineage tracing with the dye, DiI-CM. The manipulated conceptuses and untreated controls were cultured in KSOM-AA to morula and blastocyst stages (84 or 108 h pc, respectively), fixed, and immunostained for Oct4 and Cdx2. Antigen distribution, number of nuclei (stained by 42,6-diamidino-2-phenylindole), and cell progeny labeled with DiI-CM were examined by confocal laser scanning microscopy. Cell numbers are means � SD and were analyzed by a Student t-test. Cells positive for Cdx2 were assumed to represent trophectoderm or trophectoderm precursors, ones positive for Oct4 but negative for Cdx2 (Oct+Cdx–) inner cell mass. Ablation of a blastomere failed to prevent developmental progression in either strain, but the total number of cells at both morula (SW 11.4 � 3.3 v. 19.2 � 7.1; CF1 10.1 � 2.5 v. 22.1 � 6.4) and blastocyst (SW 48.6 � 7.4 v. 69.4 � 9.9; CF1 24.8 � 6.2 v. 53.8 � 13.5) was significantly reduced. In SW, the average fraction of Oct+Cdx– cells after blastomere ablation was significantly lower (P < 0.05) than in controls in morulae (0.47 � 0.2 v. 0.65 � 0.1) but not in blastocysts (0.33 � 0.1 and 0.34 � 0.1). In CF1, the fraction of Oct+Cdx– cells was lower (P < 0.05) than controls in both morulae and blastocysts (0.31 � 0.2 v. 0.58 � 0.2 and 0.18 � 0.1 v. 0.27 � 0.04, respectively). The CF1 morulae fell mainly into 2 groups, one low fraction (≤0.3, 54%) of Oct+Cdx– cells and the other with a more normal fraction (0.3 to 0.8, 43%) relative to controls. A majority of NIH Swiss morulae had an Oct+Cdx– cell fraction >0.4 and in this respect resembled controls. We then examined these strain differences by lineage tracing. The majority of SW blastocysts (65%, n = 34) demonstrated a random localization of DiI-labeled cell progeny (i.e., there was no preferential distribution of labeled cells to either the embryonic or abembryonic poles). By contrast, in CF1 (n = 38), 32% of blastocysts had labeled cells confined to their embryonic end and 42% with DiI-labeled, Cdx2-positive cells clustered at the abembryonic locale. A random localization was observed in 26% of blastocysts. In conclusion, these data confirm that there is plasticity in early mouse development but also suggest that in CF1, but not in SW conceptuses, blastomeres at the 2-cell stage differ in their abilities to contribute to the embryonic pole. Similar strain differences may explain the disagreements among studies on lineage tracing in early cleavage stage conceptuses.


2007 ◽  
Vol 86 (12) ◽  
pp. 1203-1206 ◽  
Author(s):  
J. Oh ◽  
C.J. Wang ◽  
M. Poole ◽  
E. Kim ◽  
R.C. Davis ◽  
...  

The primary and modifier genes that regulate normal maxillofacial development are unknown. Previous quantitative trait locus (QTL) analyses using the F2 progeny of 2 mouse strains, DBA/2J (short snout/wide face) and C57BL/6J (long snout/narrow face), revealed a significant logarithm-of-odds (LOD) score for snout length on mouse chromosome 12 at 44 centimorgan (cM). We further sought to validate this locus contributing to anterior-posterior dimensions of the upper mid-face at the D12Mit7 marker in a 44-centimorgan portion of chromosome 12. Congenic mice carrying introgressed DNA from DBA/2J on a C57BL/6J background were selected for submental vertex cephalometric imaging. Results confirmed QTLs, determining that short snout length (P < 0.05) and face width relative to snout length (P < 0.01) were present in the 44-cM region of chromosome 12. We conclude that one or more genes contributing to the shape of the maxillary complex are located near 44 cM of mouse chromosome 12.


Sign in / Sign up

Export Citation Format

Share Document