scholarly journals Endothelial TGF-β signaling instructs smooth muscle development in the cardiac outflow tract

Author(s):  
Giulia L.M. Boezio ◽  
Anabela Bensimon-Brito ◽  
Janett Piesker ◽  
Stefan Guenther ◽  
Christian S.M. Helker ◽  
...  

SummaryThe development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which have often been associated with impaired TGF-β signaling. To further investigate the role of TGF-β signaling in OFT formation, we generated zebrafish lacking the type I TGF-β receptor Alk5 and found a strikingly specific dilation of the OFT. alk5 mutants also exhibit increased EC numbers, extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5 mutants rescues both endothelial and SMC defects. Furthermore, modulation of the ECM gene fibulin-5, a TGF-β target, partially restores OFT morphology and function. These findings reveal a new requirement for endothelial TGF-β signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Giulia LM Boezio ◽  
Anabela Bensimon-Brito ◽  
Janett Piesker ◽  
Stefan Guenther ◽  
Christian SM Helker ◽  
...  

The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-β signaling. To better understand the role of TGF-β signaling in OFT formation, we generated zebrafish lacking the TGF-β receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-β signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 23-26 ◽  
Author(s):  
Joy Roy ◽  
Phan Kiet Tran ◽  
Karin Lundmark ◽  
Adnan Rahman ◽  
Ulf Hedin

SummaryIn atherogenesis and in response to vessel injury, arterial smooth muscle cells (SMCs) are activated from a quiescent, differentiated state into an actively proliferating and synthetic phenotype which migrate into the intima where the cells participate in the formation of a fibrous plaque or intimal hyperplasia. The mechanisms involved in the control of SMC function are not clear and no preventive therapy against SMC activation is available. Interactions between SMCs and the extracellular matrix have been shown to influence SMC structure and function through integrin-mediated signaling processes. The SMC basement membrane is a specific form of extracellular matrix which seems to be crucial for the maintenance of SMC quiesence and the disruption of these interactions is part of cellular activation after atherogenic or traumatic stimuli. This concept of “negative growth control” may constitute a future target for the development of new strategies in the prevention of SMC activation in atherogenesis and restenosis formation.


2021 ◽  
Vol 22 (5) ◽  
pp. 2685
Author(s):  
Lisa Adams ◽  
Julia Brangsch ◽  
Bernd Hamm ◽  
Marcus R. Makowski ◽  
Sarah Keller

This review outlines recent preclinical and clinical advances in molecular imaging of abdominal aortic aneurysms (AAA) with a focus on molecular magnetic resonance imaging (MRI) of the extracellular matrix (ECM). In addition, developments in pharmacologic treatment of AAA targeting the ECM will be discussed and results from animal studies will be contrasted with clinical trials. Abdominal aortic aneurysm (AAA) is an often fatal disease without non-invasive pharmacologic treatment options. The ECM, with collagen type I and elastin as major components, is the key structural component of the aortic wall and is recognized as a target tissue for both initiation and the progression of AAA. Molecular imaging allows in vivo measurement and characterization of biological processes at the cellular and molecular level and sets forth to visualize molecular abnormalities at an early stage of disease, facilitating novel diagnostic and therapeutic pathways. By providing surrogate criteria for the in vivo evaluation of the effects of pharmacological therapies, molecular imaging techniques targeting the ECM can facilitate pharmacological drug development. In addition, molecular targets can also be used in theranostic approaches that have the potential for timely diagnosis and concurrent medical therapy. Recent successes in preclinical studies suggest future opportunities for clinical translation. However, further clinical studies are needed to validate the most promising molecular targets for human application.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


2001 ◽  
Vol 114 (19) ◽  
pp. 3507-3516 ◽  
Author(s):  
Amelia K. Scaffidi ◽  
Yuben P. Moodley ◽  
Markus Weichselbaum ◽  
Philip J. Thompson ◽  
Darryl A. Knight

Myofibroblasts, characterised by high expression of α-smooth muscle actin (α-SMA), are important and transient cells in normal wound healing but are found in increased number in various pathological conditions of the lung including asthma and pulmonary fibrosis. The mechanisms that regulate the myofibroblast phenotype are unknown but are likely to involve signals from the extracellular matrix transmitted via specific integrins. Vitronectin is a glycoprotein released during inflammation and has been shown to regulate the phenotype of vascular smooth muscle cells via αv and β1 integrins. In the current study we have examined whether vitronectin influences the phenotype and function of normal human lung fibroblasts (HFL-1). Incubation of HFL-1 cells with vitronectin induced a concentration-dependent reduction in α-SMA expression. By contrast, function-blocking monoclonal antibodies to the vitronectin integrins αv, β1, αvβ3 and αvβ5 induced the expression of α-SMA and its organization into stress fibers. Expression of α-SMA induced by all function-blocking monoclonal antibodies was abrogated by inhibition of protein kinase C and phosphatidylinositol-3 kinase, but the effects of inhibition of other signalling pathways was integrin dependent. Exposure to other extracellular matrix proteins such as fibronectin, collagen or their integrins did not influence expression of α-SMA. The expression and organization of α-SMA induced by exposure to function-blocking antibodies was translated into an augmented capacity of HFL-1 cells to contract fibroblast populated collagen gels. By contrast, contraction of collagen gels following incubation with vitronectin was not significantly different to control. This study has shown that vitronectin influences the phenotype and behaviour of HFL-1 cells by downregulating the expression of α-SMA and reducing their contractile ability. By contrast, occupancy of specific integrins by function-blocking antibodies upregulated the expression of α-SMA and induced the formation of functional stress fibers capable of contracting collagen gels. These results suggest that vitronectin modulates the fibroblast-myofibroblast phenotype, implying an important role in the remodelling process during lung development or response to injury.


Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 195-205
Author(s):  
J. B. L. Bard ◽  
M. K. Bansal ◽  
A. S. A. Ross

This paper examines the role of the extracellular matrix (ECM) in the development of the cornea. After a brief summary of the corneal structure and ECM, we describe evidence suggesting that the differentiation of neural crest (NC) cells into endothelium and fibroblasts is under the control of ocular ECM. We then examine the role of collagen I in stromal morphogenesis by comparing normal corneas with those of homozygous Movl3 mice which do not make collagen I. We report that, in spite of this absence, the cellular morphology of the Movl3 eye is indistinguishable from that of the wild type. In the 16-day mutant stroma, however, the remaining collagens form small amounts of disorganized, thin fibrils rather than orthogonally organized 20 nm-diameter fibrils; a result implying that collagen I plays only a structural role and that its absence is not compensated for. It also suggests that, because these remaining collagens will not form the normal fibrils that they will in vitro, fibrillogenesis in the corneal stroma differs from that elsewhere. The latter part of the paper describes our current work on chick stromal deposition using corneal epithelia isolated with an intact basal lamina that lay down in vitro ∼3μm-thick stromas of organized fibrils similar to that seen in vivo. This experimental system has yielded two unexpected results. First, the amount of collagen and proteoglycans produced by such epithelia is not dependent on whether its substratum is collagenous and we therefore conclude that stromal production by the intact epithelium is more autonomous than hitherto thought. Second, chondroitin sulphate (CS), the predominant proteoglycan, appears to play no role in stromal morphogenesis: epithelia cultured in testicular hyaluronidase, which degrades CS, lay down stromas whose organization and fibrildiameter distribution are indistinguishable from controls. One possible role for CS, however, is as a lubricant which facilitates corneal growth: it could allow fibrils to move over one another without deforming their orthogonal organization. Finally, we have examined the processes of fibrillogenesis in the corneal stroma and conclude that they are different from those elsewhere in the embryo and in vitro, perhaps because there is in the primary stroma an unidentified, highly hydrated ECM macromolecule that embeds the fibrils and that may mediate their morphogenesis.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Anna Zampetaki ◽  
Xiaoke Yin ◽  
Ursula Mayr ◽  
Renata Gomes ◽  
Sarah Langley ◽  
...  

Rationale: Extracellular matrix (ECM) remodeling is a key function of vascular smooth muscle cells (SMCs). MicroRNAs (miRNAs), in particular the miR-29 family and miR-195, have been implicated in the control of ECM secretion. Objective: To perform a proteomics comparison of miRNA effects on ECM production by vascular SMCs. Methods and Results: Murine SMCs were transfected with miRNA mimics and antimiRs of miR-29b and miR-195, and their conditioned medium was analyzed by mass spectrometry. Both miRNAs targeted a cadre of ECM proteins, including proteoglycans, collagens, proteases, elastin and proteins associated with elastic microfibrils, albeit miR-29 showed a stronger effect. The proteomics findings were subsequently validated at the transcription level using quantitative polymerase chain reaction. Similar to miR-29, in vivo inhibition of miR-195 by intraperitoneal injection of cholesterol bound antagomiRs led to significant alterations of elastin expression in murine aortas. Since elastin degradation is a key event in aortic aneurysm formation, we investigated miR-195 expression in patients. In human aortic aneurysmal tissue, miR-195 expression was reduced compared to non-aneurysmal tissue. In plasma, a comparison between male patients with abdominal aortic aneurysms and controls matched for diabetes and hypertension returned a panel of five highly correlated miRNAs: miR-195, miR-125b, miR-148a, miR-20a and miR-340 showed significant inverse associations with the presence of abdominal aortic aneurysms and aortic diameter, with miR-195 dominating in terms of association strength. Conclusions: Using proteomic analysis, we compared the effect of miR-29 and miR-195 on ECM secretion by vascular SMCs and identified novel miRNA targets. Findings in patients support an important role for miR-195 in vascular remodeling as evidenced by reduced miR-195 expression in human aneurysmal tissue and an inverse correlation between plasma miR-195 levels and aortic diameter.


2003 ◽  
Vol 285 (3) ◽  
pp. H1081-H1090 ◽  
Author(s):  
Shu Q. Liu ◽  
Christopher Tieche ◽  
Dalin Tang ◽  
Paul Alkema

Blood vessels are subject to fluid shear stress, a hemodynamic factor that inhibits the mitogenic activities of vascular cells. The presence of nonuniform shear stress has been shown to exert graded suppression of cell proliferation and induces the formation of cell density gradients, which in turn regulate the direction of smooth muscle cell (SMC) migration and alignment. Here, we investigated the role of platelet-derived growth factor (PDGF)-β receptor and Src in the regulation of such processes. In experimental models with vascular polymer implants, SMCs migrated from the vessel media into the neointima of the implant under defined fluid shear stress. In a nonuniform shear model, blood shear stress suppressed the expression of PDGF-β receptor and the phosphorylation of Src in a shear level-dependent manner, resulting in the formation of mitogen gradients, which were consistent with the gradient of cell density as well as the alignment of SMCs. In contrast, uniform shear stress in a control model elicited an even influence on the activity of mitogenic molecules without modulating the uniformity of cell density and did not significantly influence the direction of SMC alignment. The suppression of the PDGF-β receptor tyrosine kinase and Src with pharmacological substances diminished the gradients of mitogens and cell density and reduced the influence of nonuniform shear stress on SMC alignment. These observations suggest that PDGF-β receptor and Src possibly serve as mediating factors in nonuniform shear-induced formation of cell density gradients and alignment of SMCs in the neointima of vascular polymer implants.


1993 ◽  
Vol 265 (3) ◽  
pp. L250-L259
Author(s):  
E. H. Webster ◽  
S. R. Hilfer ◽  
R. L. Searls ◽  
J. Kornilow

The mesodermal capsule of the fetal lung plays a role in differentiation of the respiratory region. It has been proposed for other epithelial organs that the mesodermal capsule influences development by modifying the basal lamina or the extended extracellular matrix. The effect could be on deposition or turnover of collagens, proteoglycans, and/or glycoproteins. This study tests the role of glycoproteins in differentiation of respiratory endings by inhibiting their synthesis with the antibiotic tunicamycin (TM). Lungs at 16 and 18 days gestation and 3 days after birth were cultured with TM and examined for morphological and biochemical differences from normal controls. With TM, alveolar regions did not expand properly and formed fewer type I pneumocytes, although type II pneumocytes were unaffected. The epithelium of untreated respiratory regions showed greater incorporation of radioactive mannose than the airways region or mesenchyme. This incorporation was diminished in TM, but the pattern persisted. Comparison with the results obtained with beta-xyloside suggested that differentiation of type I and type II pneumocytes is under separate control.


Sign in / Sign up

Export Citation Format

Share Document