scholarly journals The Streptomyces volatile 3-octanone alters auxin/cytokinin and growth in Arabidopsis thaliana via the gene family KISS ME DEADLY

Author(s):  
Bradley R. Dotson ◽  
Vasiliki Verschut ◽  
Klas Flärdh ◽  
Paul G. Becher ◽  
Allan G. Rasmusson

AbstractPlants enhance their growth in the presence of particular soil bacteria due to volatile compounds affecting the homeostasis of plant growth hormones. However, the mechanisms of volatile compound signaling and plant perception has been unclear. This study identifies the bioactive volatile 3-octanone as a plant growth stimulating volatile, constitutively emitted by the soil bacterium Streptomyces coelicolor grown on a rich medium. When 3-octanone is applied to developing Arabidopsis thaliana seedlings, a family-wide induction of the Kelch-repeat F-box genes known as KISS ME DEADLY (KMD) subsequently alters auxin/cytokinin homeostasis to promote the growth of lateral roots and inhibit the primary root. Loss of function of the KMD family or other alterations of auxin/cytokinin homeostasis suppresses the volatile-induced growth response. This reveals a function of KMDs in the pathway of microbial volatile perception and plant growth responses.Significance StatementVolatiles from soil microbes are profound stimulators of plant growth. This work identifies for the first time a plant hormone signaling regulator, the gene family KISS ME DEADLY (KMD), to be an early essential step in plant growth promotion by a soil bacterial volatile, 3-octanone. The KMD-regulated gene network alters the tissue sensitivity balance for the growth hormones auxin and cytokinin, modifying root growth rate and architecture. Previously, the Kelch repeat F-box gene family of KMDs have been shown to be important down-regulators of both positive cytokinin signaling and phenylpropanoid biosynthesis, but upstream cues were unknown. This report places the KMD family regulation of plant growth and defense into its biotic context.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11373
Author(s):  
Claudia Clavero-León ◽  
Daniela Ruiz ◽  
Javier Cillero ◽  
Julieta Orlando ◽  
Bernardo González

Copper (Cu) is important for plant growth, but high concentrations can lead to detrimental effects such as primary root length inhibition, vegetative tissue chlorosis, and even plant death. The interaction between plant-soil microbiota and roots can potentially affect metal mobility and availability, and, therefore, overall plant metal concentration. Cupriavidus metallidurans CH34 is a multi metal-resistant bacterial model that alters metal mobility and bioavailability through ion pumping, metal complexation, and reduction processes. The interactions between strain CH34 and plants may affect the growth, metal uptake, and translocation of Arabidopsis thaliana plants that are exposed to or not exposed to Cu. In this study, we looked also at the specific gene expression changes in C. metallidurans when co-cultured with Cu-exposed A. thaliana. We found that A. thaliana’s rosette area, primary and secondary root growth, and dry weight were affected by strain CH34, and that beneficial or detrimental effects depended on Cu concentration. An increase in some plant growth parameters was observed at copper concentrations lower than 50 µM and significant detrimental effects were found at concentrations higher than 50 µM Cu. We also observed up to a 90% increase and 60% decrease in metal accumulation and mobilization in inoculated A. thaliana. In turn, copper-stressed A. thaliana altered C. metallidurans colonization, and cop genes that encoded copper resistance in strain CH34 were induced by the combination of A. thaliana and Cu. These results reveal the complexity of the plant-bacteria-metal triad and will contribute to our understanding of their applications in plant growth promotion, protection, and phytoremediation strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jae Yong Yoo ◽  
Ki Seong Ko ◽  
Bich Ngoc Vu ◽  
Young Eun Lee ◽  
Seok Han Yoon ◽  
...  

Alpha-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase [EC 2.4.1.143, N-acetylglucosaminyltransferase II (GnTII)] catalyzes the transfer of N-acetylglucosamine (GlcNAc) residue from the nucleotide sugar donor UDP-GlcNAc to the α1,6-mannose residue of the di-antennary N-glycan acceptor GlcNAc(Xyl)Man3(Fuc)GlcNAc2 in the Golgi apparatus. Although the formation of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan is known to be associated with GnTII activity in Arabidopsis thaliana, its physiological significance is still not fully understood in plants. To address the physiological importance of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan, we examined the phenotypic effects of loss-of-function mutations in GnTII in the presence and absence of stress, and responsiveness to phytohormones. Prolonged stress induced by tunicamycin (TM) or sodium chloride (NaCl) treatment increased GnTII expression in wild-type Arabidopsis (ecotype Col-0) but caused severe developmental damage in GnTII loss-of-function mutants (gnt2-1 and gnt2-2). The absence of the 6-arm GlcNAc residue in the N-glycans in gnt2-1 facilitated the TM-induced unfolded protein response, accelerated dark-induced leaf senescence, and reduced cytokinin signaling, as well as susceptibility to cytokinin-induced root growth inhibition. Furthermore, gnt2-1 and gnt2-2 seedlings exhibited enhanced N-1-naphthylphthalamic acid-induced inhibition of tropic growth and development. Thus, GnTII’s promotion of the 6-arm GlcNAc addition to N-glycans is important for plant growth and development under stress conditions, possibly via affecting glycoprotein folding and/or distribution.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1722
Author(s):  
Lidiya Vysotskaya ◽  
Guzel Akhiyarova ◽  
Arina Feoktistova ◽  
Zarina Akhtyamova ◽  
Alla Korobova ◽  
...  

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.


2003 ◽  
Vol 49 (6) ◽  
pp. 383-389 ◽  
Author(s):  
Zhinong Yan ◽  
M S Reddy ◽  
Joseph W Kloepper

Plant-growth-promoting rhizobacteria (PGPR) are used on crops most often as seed treatments; however, an alternative application method for transplanted vegetables is mixing PGPR into the soilless medium in which the transplants are grown. Studies were undertaken to compare root colonization and persistence of rifampicin-resistant mutants of PGPR strains Bacillus pumilus SE34 and Pseudomonas fluorescens 89B61, SE34r and 89B61r, on tomato as a function of application method. When the bacteria were incorporated into Promix(tm) soilless medium at log 6, 7, and 8 colony- forming units/g, populations of strain SE34r per gram of medium maintained the initial inoculum densities, while populations of 89B61r decreased approximately one to two orders of magnitude by 4 weeks after planting. The populations of each PGPR strain colonizing roots after application into the soilless medium showed a similar pattern at 6 weeks as that at 4 weeks after planting, with higher populations on the whole roots and lateral roots than on the taproots. Strain SE34r but not 89B61r moved upwards and colonized the phyllosphere when incorporated into the soilless medium. Following application as seed treatment, populations of SE34r were significantly higher on upper roots and on the taproot than were populations following application through the soilless medium. Conversely, populations were higher on lower roots and lateral roots following application through the soilless medium than were populations following application as seed treatment. While strain SE34 enhanced plant growth with application both to the medium and as seed treatment, the level of growth promotion was significantly greater with application in the soilless medium. The results indicate that PGPR can be successfully incorporated into soilless media in vegetable transplant production systems.Key words: rhizobacteria, plant colonization, Bacillus pumilus, Pseudomonas fluorescens.


2019 ◽  
Vol 61 (2) ◽  
pp. 342-352 ◽  
Author(s):  
Pamela A Naulin ◽  
Grace I Armijo ◽  
Andrea S Vega ◽  
Karem P Tamayo ◽  
Diana E Gras ◽  
...  

Abstract Nitrate can act as a potent signal to control growth and development in plants. In this study, we show that nitrate is able to stimulate primary root growth via increased meristem activity and cytokinin signaling. Cytokinin perception and biosynthesis mutants displayed shorter roots as compared with wild-type plants when grown with nitrate as the only nitrogen source. Histological analysis of the root tip revealed decreased cell division and elongation in the cytokinin receptor double mutant ahk2/ahk4 as compared with wild-type plants under a sufficient nitrate regime. Interestingly, a nitrate-dependent root growth arrest was observed between days 5 and 6 after sowing. Wild-type plants were able to recover from this growth arrest, while cytokinin signaling or biosynthesis mutants were not. Transcriptome analysis revealed significant changes in gene expression after, but not before, this transition in contrasting genotypes and nitrate regimes. We identified genes involved in both cell division and elongation as potentially important for primary root growth in response to nitrate. Our results provide evidence linking nitrate and cytokinin signaling for the control of primary root growth in Arabidopsis thaliana.


2013 ◽  
Vol 26 (5) ◽  
pp. 546-553 ◽  
Author(s):  
Ana Zúñiga ◽  
María Josefina Poupin ◽  
Raúl Donoso ◽  
Thomas Ledger ◽  
Nicolás Guiliani ◽  
...  

Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant–bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.


2000 ◽  
Vol 30 (6) ◽  
pp. 845-854 ◽  
Author(s):  
Masahiro Shishido ◽  
Christopher P Chanway

Seeds of two hybrid spruce (Picea glauca (Moench) Voss × Picea engelmannii Parry ex Engelm.) ecotypes were inoculated with one of six plant growth-promoting rhizobacteria (PGPR) strains previously shown to be able to stimulate spruce growth in controlled environments. The resulting seedlings were grown in the greenhouse for 17 weeks before outplanting at four reforestation sites. Inoculation with five of the six strains caused significant seedling growth promotion in the greenhouse, which necessitated analysis of relative growth rates (RGR) to evaluate seedling performance in the field. Four months after outplanting, most strains enhanced spruce shoot or root RGRs in the field, but seedling growth responses were strain specific. For example, Pseudomonas strain Ss2-RN significantly increased both shoot and root RGRs by 10-234% at all sites, but increases of 28-70% were most common. In contrast, Bacillus strain S20-R was ineffective at all outplanting sites. In addition, seedlings inoculated with four of the six strains had significantly less shoot injury than control seedlings at all sites. Evaluation of root colonization by PGPR indicated that bacterial population declines were not related to spruce growth response variability in the field. Our results indicate that once plant growth promotion is induced in the greenhouse, seedling RGR can increase by more than 100% during the first growing season in the field. However RGR increases of 21-47% were more common and may be more representative of the magnitude of biomass increases that can result from PGPR inoculation.


2004 ◽  
Vol 50 (7) ◽  
pp. 475-481 ◽  
Author(s):  
Chunxia Wang ◽  
Daoben Wang ◽  
Qi Zhou

Pseudomonas fluorescens CS85, which was previously isolated from the rhizosphere of cotton seedlings, acts as both a plant growth-promoting bacterium and a biocontrol agent against cotton pathogens, including Rhizoctonia solani, Colletotrichum gossypii, Fusarium oxysporum f sp. vasinfectum, and Verticillium dahliae. Strain CS85 was labeled separately with luxAB and gusA. The labeled strains were stably maintained and had high levels of expression of the marker genes, luxAB and gusA, after successive transfers on nonselective medium, long-term preservation, and after recovery from soil. The labeled strains displayed similar biocontrol characteristics (e.g., antibiosis, effects of growth -promotion and disease -control) to the original strain. The labeled strains colonized all surfaces of the young plant root zones, such as roots hairs and lateral roots, although the distribution of the labeled strains on the root surfaces was not uniform. Moreover, the population densities of the labeled strains on the root surface were stably maintained at high levels during the first 2 weeks of plant growth in the native soil, so that about 107–108 CFU/g root were detected, then decreased gradually. Nevertheless, approximately 106 CFU/g root of the labeled strains were observed on the root surfaces 35 d after planting.Key words: plant growth-promoting bacteria, luxAB, gusA, root colonization.


Author(s):  
Di Fan ◽  
Donald L. Smith

There are pressing needs to reduce the use of agrochemicals, and PGPR are receiving increasing interest in plant growth promotion and disease protection. This study follows up our previous report that the four newly isolated rhizobacteria promote the growth of Arabidopsis thaliana .


Sign in / Sign up

Export Citation Format

Share Document