scholarly journals Implications of error-prone long-read whole-genome shotgun sequencing on characterizing reference microbiomes

Author(s):  
Yu Hu ◽  
Li Fang ◽  
Christopher Nicholson ◽  
Kai Wang

SummaryLong-read sequencing techniques, such as the Oxford Nanopore Technology, can generate reads that are tens of kilobases in length, and are therefore particularly relevant for microbiome studies. However, due to the higher per-base error rates than typical short-read sequencing, the application of long-read sequencing on microbiomes remains largely unexplored. Here we deeply sequenced two human microbiota mock community samples (HM-276D and HM-277D) from the Human Microbiome Project. We showed that assembly programs consistently achieved high accuracy (~99%) and completeness (~99%) for bacterial strains with adequate coverage. We also found that long-read sequencing provides accurate estimates of species-level abundance (R=0.94 for 20 bacteria with abundance ranging from 0.005% to 64%). Our results demonstrate the feasibility to characterize complete microbial genomes and populations from error-prone Nanopore sequencing data, but also highlight necessary bioinformatics improvements for future metagenomics tool development.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhixing Feng ◽  
Jose C. Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants play an instrumental role in deciphering cellular genetic heterogeneity, but they are still difficult tasks because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, provide an opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrate that iGDA can accurately reconstruct haplotypes in closely related strains of the same species (divergence ≥0.011%) from long-read metagenomic data.


2020 ◽  
Author(s):  
Zhixing Feng ◽  
Jose Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, co-infection of multiple pathogens. Detecting and phasing minor variants, which is to determine whether multiple variants are from the same haplotype, play an instrumental role in deciphering cellular genetic heterogeneity, but are still difficult because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, have provided an unprecedented opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrated that iGDA can accurately reconstruct haplotypes in closely-related strains of the same species (divergence ≥ 0.011%) from long-read metagenomic data. Our approach, therefore, presents a significant advance towards the complete deciphering of cellular genetic heterogeneity.


Author(s):  
Kristoffer Sahlin ◽  
Botond Sipos ◽  
Phillip L James ◽  
Paul Medvedev

AbstractOxford Nanopore (ONT) is a leading long-read technology which has been revolutionizing transcriptome analysis through its capacity to sequence the majority of transcripts from end-to-end. This has greatly increased our ability to study the diversity of transcription mechanisms such as transcription initiation, termination, and alternative splicing. However, ONT still suffers from high error rates which have thus far limited its scope to reference-based analyses. When a reference is not available or is not a viable option due to reference-bias, error correction is a crucial step towards the reconstruction of the sequenced transcripts and downstream sequence analysis of transcripts. In this paper, we present a novel computational method to error correct ONT cDNA sequencing data, called isONcorrect. IsONcorrect is able to jointly use all isoforms from a gene during error correction, thereby allowing it to correct reads at low sequencing depths. We are able to obtain a median accuracy of 98.9-99.6%, demonstrating the feasibility of applying cost-effective cDNA full transcript length sequencing for reference-free transcriptome analysis.


Author(s):  
Kristoffer Sahlin ◽  
Marisa Lim ◽  
Stefan Prost

Third generation sequencing technologies, such as Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), have gained popularity over the last years. These platforms can generate millions of long read sequences. This is not only advantageous for genome sequencing projects, but also for amplicon-based high-throughput sequencing experiments, such as DNA barcoding. However, the relatively high error rates associated with these technologies still pose challenges for generating high quality consensus sequences. Here we present NGSpeciesID, a program which can generate highly accurate consensus sequences from long-read amplicon sequencing technologies, including ONT and PacBio. The tool includes clustering of the reads to help filter out contaminants or reads with high error rates and employs polishing strategies specific to the appropriate sequencing platform. We show that NGSpeciesID produces consensus sequences with improved usability by minimizing preprocessing and software installation and scalability by enabling rapid processing of hundreds to thousands of samples, while maintaining similar consensus accuracy as current pipelines


Author(s):  
Noam Harel ◽  
Moran Meir ◽  
Uri Gophna ◽  
Adi Stern

Abstract One of the key challenges in the field of genetics is the inference of haplotypes from next generation sequencing data. The MinION Oxford Nanopore sequencer allows sequencing long reads, with the potential of sequencing complete genes, and even complete genomes of viruses, in individual reads. However, MinION suffers from high error rates, rendering the detection of true variants difficult. Here, we propose a new statistical approach named AssociVar, which differentiates between true mutations and sequencing errors from direct RNA/DNA sequencing using MinION. Our strategy relies on the assumption that sequencing errors will be dispersed randomly along sequencing reads, and hence will not be associated with each other, whereas real mutations will display a non-random pattern of association with other mutations. We demonstrate our approach using direct RNA sequencing data from evolved populations of the MS2 bacteriophage, whose small genome makes it ideal for MinION sequencing. AssociVar inferred several mutations in the phage genome, which were corroborated using parallel Illumina sequencing. This allowed us to reconstruct full genome viral haplotypes constituting different strains that were present in the sample. Our approach is applicable to long read sequencing data from any organism for accurate detection of bona fide mutations and inter-strain polymorphisms.


2019 ◽  
Author(s):  
Noam Harel ◽  
Moran Meir ◽  
Uri Gophna ◽  
Adi Stern

One of the key challenges in the field of genetics is the inference of haplotypes from next generation sequencing data. The MinION Oxford Nanopore sequencer allows sequencing long reads, with the potential of sequencing complete genes, and even complete genomes of viruses, in individual reads. However, MinION suffers from high error rates, rendering the detection of true variants difficult. Here we propose a new statistical approach named AssociVar, which differentiates between true mutations and sequencing errors from direct RNA/DNA sequencing using MinION. Our strategy relies on the assumption that sequencing errors will be dispersed randomly along sequencing reads, and hence will not be associated with each other, whereas real mutations will display a non-random pattern of association with other mutations. We demonstrate our approach using direct RNA sequencing data from evolved populations of the MS2 bacteriophage, whose small genome makes it ideal for MinION sequencing. AssociVar inferred several mutations in the phage genome, which were corroborated using parallel Illumina sequencing. This allowed us to reconstruct full genome viral haplotypes constituting different strains that were present in the sample. Our approach is applicable to long read sequencing data from any organism for accurate detection of bona fide mutations and inter-strain polymorphisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kristoffer Sahlin ◽  
Botond Sipos ◽  
Phillip L. James ◽  
Paul Medvedev

AbstractOxford Nanopore (ONT) is a leading long-read technology which has been revolutionizing transcriptome analysis through its capacity to sequence the majority of transcripts from end-to-end. This has greatly increased our ability to study the diversity of transcription mechanisms such as transcription initiation, termination, and alternative splicing. However, ONT still suffers from high error rates which have thus far limited its scope to reference-based analyses. When a reference is not available or is not a viable option due to reference-bias, error correction is a crucial step towards the reconstruction of the sequenced transcripts and downstream sequence analysis of transcripts. In this paper, we present a novel computational method to error correct ONT cDNA sequencing data, called isONcorrect. IsONcorrect is able to jointly use all isoforms from a gene during error correction, thereby allowing it to correct reads at low sequencing depths. We are able to obtain a median accuracy of 98.9–99.6%, demonstrating the feasibility of applying cost-effective cDNA full transcript length sequencing for reference-free transcriptome analysis.


Author(s):  
Huan Zhong ◽  
Zongwei Cai ◽  
Zhu Yang ◽  
Yiji Xia

AbstractNAD tagSeq has recently been developed for the identification and characterization of NAD+-capped RNAs (NAD-RNAs). This method adopts a strategy of chemo-enzymatic reactions to label the NAD-RNAs with a synthetic RNA tag before subjecting to the Oxford Nanopore direct RNA sequencing. A computational tool designed for analyzing the sequencing data of tagged RNA will facilitate the broader application of this method. Hence, we introduce TagSeqTools as a flexible, general pipeline for the identification and quantification of tagged RNAs (i.e., NAD+-capped RNAs) using long-read transcriptome sequencing data generated by NAD tagSeq method. TagSeqTools comprises two major modules, TagSeek for differentiating tagged and untagged reads, and TagSeqQuant for the quantitative and further characterization analysis of genes and isoforms. Besides, the pipeline also integrates some advanced functions to identify antisense or splicing, and supports the data reformation for visualization. Therefore, TagSeqTools provides a convenient and comprehensive workflow for researchers to analyze the data produced by the NAD tagSeq method or other tagging-based experiments using Oxford nanopore direct RNA sequencing. The pipeline is available at https://github.com/dorothyzh/TagSeqTools, under Apache License 2.0.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Benjamin C. Creekmore ◽  
Josh H. Gray ◽  
William G. Walton ◽  
Kristen A. Biernat ◽  
Michael S. Little ◽  
...  

ABSTRACT Gut microbial β-glucuronidase (GUS) enzymes play important roles in drug efficacy and toxicity, intestinal carcinogenesis, and mammalian-microbial symbiosis. Recently, the first catalog of human gut GUS proteins was provided for the Human Microbiome Project stool sample database and revealed 279 unique GUS enzymes organized into six categories based on active-site structural features. Because mice represent a model biomedical research organism, here we provide an analogous catalog of mouse intestinal microbial GUS proteins—a mouse gut GUSome. Using metagenome analysis guided by protein structure, we examined 2.5 million unique proteins from a comprehensive mouse gut metagenome created from several mouse strains, providers, housing conditions, and diets. We identified 444 unique GUS proteins and organized them into six categories based on active-site features, similarly to the human GUSome analysis. GUS enzymes were encoded by the major gut microbial phyla, including Firmicutes (60%) and Bacteroidetes (21%), and there were nearly 20% for which taxonomy could not be assigned. No differences in gut microbial gus gene composition were observed for mice based on sex. However, mice exhibited gus differences based on active-site features associated with provider, location, strain, and diet. Furthermore, diet yielded the largest differences in gus composition. Biochemical analysis of two low-fat-associated GUS enzymes revealed that they are variable with respect to their efficacy of processing both sulfated and nonsulfated heparan nonasaccharides containing terminal glucuronides. IMPORTANCE Mice are commonly employed as model organisms of mammalian disease; as such, our understanding of the compositions of their gut microbiomes is critical to appreciating how the mouse and human gastrointestinal tracts mirror one another. GUS enzymes, with importance in normal physiology and disease, are an attractive set of proteins to use for such analyses. Here we show that while the specific GUS enzymes differ at the sequence level, a core GUSome functionality appears conserved between mouse and human gastrointestinal bacteria. Mouse strain, provider, housing location, and diet exhibit distinct GUSomes and gus gene compositions, but sex seems not to affect the GUSome. These data provide a basis for understanding the gut microbial GUS enzymes present in commonly used laboratory mice. Further, they demonstrate the utility of metagenome analysis guided by protein structure to provide specific sets of functionally related proteins from whole-genome metagenome sequencing data.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S364-S364
Author(s):  
Roby Bhattacharyya ◽  
Alejandro Pironti ◽  
Bruce J Walker ◽  
Abigail Manson ◽  
Virginia Pierce ◽  
...  

Abstract Background Carbapenem-resistant Enterobacteriaceae (CRE) are a major public health threat. We report four clonally related Citrobacter freundii isolates harboring the blaKPC-3 carbapenemase in April–May 2017 that are nearly identical to a strain from 2014 at the same institution. Despite differing by ≤5 single nucleotide polymorphisms (SNPs), these isolates exhibited dramatic differences in carbapenemase plasmid architecture. Methods We sequenced four carbapenem-resistant C. freundii isolates from 2017 and compared them with an ongoing CRE surveillance project at our institution. SNPs were identified from Illumina MiSeq data aligned to a reference genome using the variant caller Pilon. Plasmids were assembled from Illumina and Oxford Nanopore sequencing data using Unicycler. Results The four 2017 isolates differed from one another by 0–5 chromosomal SNPs; two were identical. With one exception, these isolates differed by >38,000 SNPs from 25 C. freundii isolates sequenced from 2013 to 2017 at the same institution for CRE surveillance. The exception was a 2014 isolate that differed by 13–16 SNPs from each 2017 isolate, with 13 SNPs common to all four. Each C. freundii isolate harbored wild-type blaKPC-3. Despite the close relationship among the 2017 cluster, the plasmids harboring the blaKPC-3 genes differed dramatically: the carbapenemase occurred in one of the two different plasmids, with rearrangements between these plasmids across isolates. The related 2014 isolate harbored both plasmids, each with a separate copy of blaKPC-3. No transmission chains were found between any of the affected patients. Conclusion WGS confirmed clonality among four contemporaneous blaKPC-3-containing C. freundii isolates, and marked similarity with a 2014 isolate, within an institution. That only 13–16 SNPs varied between the 2014 and 2017 isolates suggests durable persistence of the blaKPC-3 gene within this lineage in a hospital ecosystem. The plasmids harboring these carbapenemase genes proved remarkably plastic, with plasmid loss and rearrangements occurring on the same time scale as two to three chromosomal point mutations. Combining short and long-read sequencing in a case cluster uniquely revealed unexpectedly rapid dynamics of carbapenemase plasmids, providing critical insight into their manner of spread. Disclosures M. J. Ferraro, SeLux Diagnostics: Scientific Advisor and Shareholder, Consulting fee. D. C. Hooper, SeLux Diagnostics: Scientific Advisor, Consulting fee.


Sign in / Sign up

Export Citation Format

Share Document