scholarly journals Dynamic Sex Chromosome Expression in Drosophila Male Germ Cells

2020 ◽  
Author(s):  
Sharvani Mahadevaraju ◽  
Justin M. Fear ◽  
Miriam Akeju ◽  
Brian J. Galletta ◽  
Mara MLS. Pinheiro ◽  
...  

AbstractSex chromosome gene content and expression is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Using single cell RNA-Seq, we demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X steady-state transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.One Sentence SummarySex chromosome expression during spermatogenesis at the single cell level

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sharvani Mahadevaraju ◽  
Justin M. Fear ◽  
Miriam Akeju ◽  
Brian J. Galletta ◽  
Mara M. L. S. Pinheiro ◽  
...  

AbstractGiven their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


2021 ◽  
Author(s):  
Sheng Zhu ◽  
Qiwei Lian ◽  
Wenbin Ye ◽  
Wei Qin ◽  
Zhe Wu ◽  
...  

Abstract Alternative polyadenylation (APA) is a widespread regulatory mechanism of transcript diversification in eukaryotes, which is increasingly recognized as an important layer for eukaryotic gene expression. Recent studies based on single-cell RNA-seq (scRNA-seq) have revealed cell-to-cell heterogeneity in APA usage and APA dynamics across different cell types in various tissues, biological processes and diseases. However, currently available APA databases were all collected from bulk 3′-seq and/or RNA-seq data, and no existing database has provided APA information at single-cell resolution. Here, we present a user-friendly database called scAPAdb (http://www.bmibig.cn/scAPAdb), which provides a comprehensive and manually curated atlas of poly(A) sites, APA events and poly(A) signals at the single-cell level. Currently, scAPAdb collects APA information from > 360 scRNA-seq experiments, covering six species including human, mouse and several other plant species. scAPAdb also provides batch download of data, and users can query the database through a variety of keywords such as gene identifier, gene function and accession number. scAPAdb would be a valuable and extendable resource for the study of cell-to-cell heterogeneity in APA isoform usages and APA-mediated gene regulation at the single-cell level under diverse cell types, tissues and species.


Author(s):  
Wenhong Hou ◽  
Li Duan ◽  
Changyuan Huang ◽  
Xingfu Li ◽  
Xiao Xu ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are promising cell sources for regenerative medicine and the treatment of autoimmune disorders. Comparing MSCs from different tissues at the single-cell level is fundamental for optimizing clinical applications. Here we analyzed single-cell RNA-seq data of MSCs from four tissues, namely umbilical cord, bone marrow, synovial tissue, and adipose tissue. We identified three major cell subpopulations, namely osteo-MSCs, chondro-MSCs, and adipo/myo-MSCs, across all MSC samples. MSCs from the umbilical cord exhibited the highest immunosuppression, potentially indicating it is the best immune modulator for autoimmune diseases. MSC subpopulations, with different subtypes and tissue sources, showed pronounced differences in differentiation potentials. After we compared the cell subpopulations and cell status pre-and-post chondrogenesis induction, osteogenesis induction, and adipogenesis induction, respectively, we found MSC subpopulations expanded and differentiated when their subtypes consist with induction directions, while the other subpopulations shrank. We identified the genes and transcription factors underlying each induction at the single-cell level and subpopulation level, providing better targets for improving induction efficiency.


2020 ◽  
Author(s):  
Léonard Hérault ◽  
Mathilde Poplineau ◽  
Adrien Mazuel ◽  
Nadine Platet ◽  
Élisabeth Remy ◽  
...  

ABSTRACTHematopoietic stem cells (HSCs) are the guarantor of the proper functioning of hematopoiesis due to their incredible diversity of potential. During aging the heterogeneity of mouse HSCs evolves, which contributes to the deterioration of the immune system. Here we address the transcriptional plasticity of HSC upon aging at the single-cell resolution. Through the analysis of 15,000 young and aged transcriptomes, we reveal 15 clusters of HSCs unveiling rare and specific HSC abilities that change with age. Pseudotime ordering complemented with regulon analysis showed that the consecutive differentiation states of HSC are delayed upon aging. By analysing cell cycle at the single cell level we highlight an imbalance of cell cycle regulators of very immature aged HSC that may contribute to their accumulation in an undifferentiated state.Our results therefore establish a reference map of young and old mouse HSC differentiation and reveal a potential mechanism that delay aged HSC differentiation.


2021 ◽  
Vol 27 ◽  
Author(s):  
Sun Shin ◽  
Youn Jin Choi ◽  
Seung-Hyun Jung ◽  
Yeun-Jun Chung ◽  
Sug Hyung Lee

Teratoma is a type of germ cell tumor that originates from totipotential germ cells that are present in gonads, which can differentiate into any of the cell types found in adult tissues. Ovarian teratomas are usually mature cystic teratomas (OMCTs, also known as dermoid cysts). Chromosome studies in OMCTs show that the chromosomes are uniformly homozygous with karyotype of 46, XX, indicating that they may be parthenogenic tumors that arise from a single ovum after thefirst meiotic division. However, the tissues in OMCTs have been known to be morphologically and immunophenotypically identical to the orthotopic tissues. Currently, expression profiles of tissue components in OMCTs are not known. To identify whether OMCT tissues are expressionally similar to or different from the orthotopic tissues, we adopted single-cell RNA-sequencing (scRNA-seq), and analyzed transcriptomes of individual cells in heterogenous tissues of two OMCTs. We found that transcriptome profiles of the OMCTs at single cell level were not significantly different from those of normal cells in orthotopic locations. The present data suggest that parthenogeneticlly altered OMCTs may not alter expression profiles of inrivirual tissue components in OMCTs.


2021 ◽  
Author(s):  
Wilson McKerrow ◽  
Shane A. Evans ◽  
Azucena Rocha ◽  
John Sedivy ◽  
Nicola Neretti ◽  
...  

AbstractLINE-1 retrotransposons are known to be expressed in early development, in tumors and in the germline. Less is known about LINE-1 expression at the single cell level, especially outside the context of cancer. Because LINE-1 elements are present at a high copy number, many transcripts that are not driven by the LINE-1 promoter nevertheless terminate at the LINE-1 3’ UTR. Thus, 3’ targeted single cell RNA-seq datasets are not appropriate for studying LINE-1. However, 5’ targeted single cell datasets provide an opportunity to analyze LINE-1 expression at the single cell level. Most LINE-1 copies are 5’ truncated, and a transcript that contains the LINE-1 5’ UTR as its 5’ end is likely to have been transcribed from its promoter. We developed a method, L1-sc (LINE-1 expression for single cells), to quantify LINE-1 expression in 5’ targeted 10x genomics single cell RNA-seq datasets. Our method confirms that LINE-1 expression is high in cancer cells, but low or absent from immune cells. We also find that LINE-1 expression is elevated in epithelial compared to immune cells outside of the context of cancer and that it is also elevated in neurons compared to glia in the mouse hippocampus.


2021 ◽  
Author(s):  
Wenfei Jin ◽  
Wenhong Hou ◽  
Li Duan ◽  
Changyuan Huang ◽  
Xingfu LI ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are promising cell source for regenerative medicine and treatment of autoimmune disorders. Comparing MSCs from different tissues at single cell level is fundamental for optimizing clinical applications. Here we analyzed single cell RNA-seq data of MSCs from 4 tissues, namely umbilical cord, bone marrow, synovial tissue and adipose tissue. We identified 3 major cell subpopulations, namely osteo-MSCs, chondro-MSCs, adipo/myo-MSCs, across all MSC samples. MSCs from umbilical cord exhibited the highest immunosuppression, potentially indicating it is the best immune modulator for autoimmune diseases. The differentiation potentials of MSC subpopulations, which are strongly associated with their subtypes and tissue sources, showed pronounced subpopulation differences. We found MSC subpopulations expanded and differentiated when their subtypes consist with induction directions, while the other subpopulations shrank. We identified the genes and transcription factors underlying each induction at single cell level and subpopulation level, providing better targets for improving induction efficiency.


2015 ◽  
Author(s):  
Greg Finak ◽  
Andrew McDavid ◽  
Masanao Yajima ◽  
Jingyuan Deng ◽  
Vivian Gersuk ◽  
...  

Single-cell transcriptomic profiling enables the unprecedented interrogation of gene expression heterogeneity in rare cell populations that would otherwise be obscured in bulk RNA sequencing experiments. The stochastic nature of transcription is revealed in the bimodality of single-cell transcriptomic data, a feature shared across single-cell expression platforms. There is, however, a paucity of computational tools that take advantage of this unique characteristic. We present a new methodology to analyze single-cell transcriptomic data that models this bimodality within a coherent generalized linear modeling framework. We propose a two-part, generalized linear model that allows one to characterize biological changes in the proportions of cells that are expressing each gene, and in the positive mean expression level of that gene. We introduce the cellular detection rate, the fraction of genes turned on in a cell, and show how it can be used to simultaneously adjust for technical variation and so-called “extrinsic noise” at the single-cell level without the use of control genes. Our model permits direct inference on statistics formed by collections of genes, facilitating gene set enrichment analysis. The residuals defined by such models can be manipulated to interrogate cellular heterogeneity and gene-gene correlation across cells and conditions, providing insights into the temporal evolution of networks of co-expressed genes at the single-cell level. Using two single-cell RNA-seq datasets, including newly generated data from Mucosal Associated Invariant T (MAIT) cells, we show how model residuals can be used to identify significant changes across biologically relevant gene sets that are missed by other methods and characterize cellular heterogeneity in response to stimulation.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009838
Author(s):  
Lei Yue ◽  
Chang Li ◽  
Mingzhu Xu ◽  
Min Wu ◽  
Jiahui Ding ◽  
...  

Through evolution, Hepatitis B Virus (HBV) developed highly intricate mechanisms exploiting host resources for its multiplication within a constrained genetic coding capacity. Yet a clear picture of viral hitchhiking of cellular processes with spatial resolution is still largely unsolved. Here, by leveraging bDNA-based fluorescence in situ hybridization (FISH) combined with immunofluorescence, we developed a microscopic approach for multiplex detection of viral nucleic acids and proteins, which enabled us to probe some of the key aspects of HBV life cycle. We confirmed the slow kinetics and revealed the high variability of viral replication at single-cell level. We directly visualized HBV minichromosome in contact with acetylated histone 3 and RNA polymerase II and observed HBV-induced degradation of Smc5/6 complex only in primary hepatocytes. We quantified the frequency of HBV pregenomic RNAs occupied by translating ribosome or capsids. Statistics at molecular level suggested a rapid translation phase followed by a slow encapsidation and maturation phase. Finally, the roles of microtubules (MTs) on nucleocapsid assembly and virion morphogenesis were analyzed. Disruption of MTs resulted in the perinuclear retention of nucleocapsid. Meanwhile, large multivesicular body (MVB) formation was significantly disturbed as evidenced by the increase in number and decrease in volume of CD63+ vesicles, thus inhibiting mature virion secretion. In conclusion, these data provided spatially resolved molecular snapshots in the context of specific subcellular activities. The heterogeneity observed at single-cell level afforded valuable molecular insights which are otherwise unavailable from bulk measurements.


Sign in / Sign up

Export Citation Format

Share Document