scholarly journals Genetic exploration of a nuclear receptor transcriptional regulatory complex

2020 ◽  
Author(s):  
Masako Asahina ◽  
Deborah Thurtle-Schmidt ◽  
Keith R. Yamamoto

ABSTRACTMetazoan transcriptional regulatory factors (TFs) bind to genomic response elements and assemble with co-regulators into transcriptional regulatory complexes (TRCs) whose composition, structure and activities are gene-, cell- and physiological-context specific. Each TRC is a “regulatory logic module,” integrating incoming signaling information, which defines context and thereby recruits a distinct combination of co-regulators that together specify outgoing regulatory activity. Analyzing TRCs unique to every context is daunting, yet justified by their properties as self-contained regulatory modules. As proof-of-concept, we performed a forward genetic screen in C. elegans carrying a synthetic simple response element for nuclear receptor NHR-25 upstream of a fluorescent reporter gene. We isolated independent mutations in uba-2, a component of the sumoylation signaling machinery, and in lir-2, which we demonstrated to be a novel co-regulator, interacting with NHR-25 through LxxLL motifs and modulating target gene expression. Our studies establish that an unbiased genetic screen readily identifies both afferent and efferent components that specify TRC function, and suggest that screening natural response elements of interest could illuminate molecular mechanisms of both context-specificity and transcriptional regulation.

1995 ◽  
Vol 15 (7) ◽  
pp. 3487-3495 ◽  
Author(s):  
M P Draper ◽  
C Salvadore ◽  
C L Denis

The CCR4 protein from Saccharomyces cerevisiae is a component of a multisubunit complex that is required for the regulation of a number of genes in yeast cells. We report here the identification of a mouse protein (mCAF1 [mouse CCR4-associated factor 1]) which is capable of interacting with and binding to the yeast CCR4 protein. The mCAF1 protein was shown to have significant similarity to proteins from humans, Caenorhabditis elegans, Arabidopsis thaliana, and S. cerevisiae. The yeast gene (yCAF1) had been previously cloned as the POP2 gene, which is required for expression of several genes. Both yCAF1 (POP2) and the C. elegans homolog of CAF1 were shown to genetically interact with CCR4 in vivo, and yCAF1 (POP2) physically associated with CCR4. Disruption of the CAF1 (POP2) gene in yeast cells gave phenotypes and defects in transcription similar to those observed with disruptions of CCR4, including the ability to suppress spt10-enhanced ADH2 expression. In addition, yCAF1 (POP2) when fused to LexA was capable of activating transcription. mCAF1 could also activate transcription when fused to LexA and could functionally substitute for yCAF1 in allowing ADH2 expression in an spt10 mutant background. These data imply that CAF1 is a component of the CCR4 protein complex and that this complex has retained evolutionarily conserved functions important to eukaryotic transcription.


2020 ◽  
Author(s):  
Hao-Xin Gui ◽  
Jun Peng ◽  
Ze-Ping Yang ◽  
Lu-Yao Chen ◽  
Hong Zeng ◽  
...  

Abstract c-Met hyperactivity has been observed in numerous neoplasms. Several researchers have shown that the abnormal activation of c-Met is mainly caused by transcriptional activation. However, the molecular mechanism behind this transcriptional regulation is poorly understood. Here, we suggest that Smad3 negatively regulates the expression and activation of c-Met via a transcriptional mechanism. We explore the molecular mechanisms that underlie Smad3-induced c-Met transcription inhibition. We found in contrast to the high expression of c-Met, Smad3 showed low protein and mRNA levels. Smad3 and c-Met expression was inconsistent between lung cancer tissues and cell lines. We also found that Smad3 overexpression suppresses whereas Smad3 knockdown significantly promotes EMT and production of the angiogenic factors VEGF, CTGF and COX-2 through the ERK1/2 pathway. In addition, Smad3 overexpression decreases whereas Smad3 knockdown significantly increases protein and mRNA levels of invasion related β-catenin and FAK through the PI3K/Akt pathway. Furthermore, using the ChIP analysis method, we demonstrate that a transcriptional regulatory complex consisting of HDAC1, Smad3 and mSin3A binds to the promoter of the c-Met gene. By either silencing endogenous mSin3A expression with siRNA or by pretreating cells with a specific HDAC1 inhibitor (MS-275), Smad3-induced transcriptional suppression of c-Met could be effectively attenuated. These results demonstrate that Smad3-induced inhibition of c-Met transcription depends on of a functional transcriptional regulatory complex that includes Smad3, mSin3A and HDAC1 at the c-Met promoter. Collectively, our findings reveal a new regulatory mechanism of c-Met signaling, and suggest a potential molecular target for the development of anticancer drugs.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1779-1791
Author(s):  
Marc E Colosimo ◽  
Susan Tran ◽  
Piali Sengupta

Abstract Nuclear receptors regulate numerous critical biological processes. The C. elegans genome is predicted to encode ∼270 nuclear receptors of which >250 are unique to nematodes. ODR-7 is the only member of this large divergent family whose functions have been defined genetically. ODR-7 is expressed in the AWA olfactory neurons and specifies AWA sensory identity by promoting the expression of AWA-specific signaling genes and repressing the expression of an AWC-specific olfactory receptor gene. To elucidate the molecular mechanisms of action of a divergent nuclear receptor, we have identified residues and domains required for different aspects of ODR-7 function in vivo. ODR-7 utilizes an unexpected diversity of mechanisms to regulate the expression of different sets of target genes. Moreover, these mechanisms are distinct in normal and heterologous cellular contexts. The odr-7 ortholog in the closely related nematode C. briggsae can fully substitute for all ODR-7-mediated functions, indicating conservation of function across 25–120 million years of divergence.


2016 ◽  
Vol 40 (5) ◽  
pp. 908-920 ◽  
Author(s):  
Kaizheng Gong ◽  
Mingxing Chen ◽  
Rujun Li ◽  
Yanghong He ◽  
Huajiang Zhu ◽  
...  

Background: We have recently demonstrated that activated transforming growth factor-β (TGF-β) signaling suppresses myocardial peroxisome proliferator-activated receptor γ (PPARγ) expression in the pressure overloaded heart. In this study, we aim to further define the molecular mechanisms that underlie TGF-β-induced PPARγ transcriptional inhibition. Methods: Adult mouse cardiac fibroblasts were isolated and cultured. PPARγ promoter activity was measured by the dual-Luciferase reporter assay. Interactions between transcription factors and the target gene were identified. Results: In cultured cardiac fibroblasts transfected with a plasmid containing a human PPARγ promoter, co-transfection of Smad3 and Smad4, but not Smad2, plasmids significantly enhanced TGF-β1-induced inhibition of PPARγ promoter activity. Promoter deletion analysis and site-directed mutagenesis assays defined two Smad binding elements on the promoter of the PPARγ gene. Utilizing chromatin immunoprecipitation analysis and DNA-affinity precipitation methods, we demonstrated that the transcriptional regulatory complex consisting of Smad3, mSin3A and HDAC1 bound to the promoter of the PPARγ gene in cardiac fibroblasts in response to TGF-β1 stimulation. Either silencing endogenous mSin3A expression by Lentivirus-mediated transduction of mSin3A shRNA or pretreatment with the specific HDAC1 inhibitor MS-275 effectively attenuated TGF-β-induced transcriptional suppression of PPARγ. Conclusion: These results suggest that TGF-β1-induced inhibition of PPARγ transcription depends on formation of a functional transcriptional regulatory complex that includes Smad3, mSin3A and HDAC1 at the PPARγ promoter.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


Sign in / Sign up

Export Citation Format

Share Document