promoter deletion analysis
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Rim Hamza ◽  
Edelín Roque ◽  
Concepción Gómez-Mena ◽  
Francisco Madueño ◽  
José Pío Beltrán ◽  
...  

Redox homeostasis has been linked to proper anther and pollen development. Accordingly, plant cells have developed several Reactive Oxygen Species (ROS)-scavenging mechanisms to maintain the redox balance. Hemopexins constitute one of these mechanisms preventing heme-associated oxidative stress in animals, fungi, and plants. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene that encodes a protein containing four hemopexin domains. We report the functional characterization of PsEND1 and the identification in its promoter region of cis-regulatory elements that are essential for the specific expression in anthers. PsEND1 promoter deletion analysis revealed that a putative CArG-like regulatory motif is necessary to confer promoter activity in developing anthers. Our data suggest that PsEND1 might be a hemopexin regulated by a MADS-box protein. PsEND1 gene silencing in pea, and its overexpression in heterologous systems, result in similar defects in the anthers consisting of precocious tapetum degradation and the impairment of pollen development. Such alterations were associated to the production of superoxide anion and altered activity of ROS-scavenging enzymes. Our findings demonstrate that PsEND1 is essential for pollen development by modulating ROS levels during the differentiation of the anther tissues surrounding the microsporocytes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Niels J. Nieuwenhuizen ◽  
Xiuyin Chen ◽  
Mickaël Pellan ◽  
Lei Zhang ◽  
Lindy Guo ◽  
...  

Abstract Background The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. Results A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1–4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. Conclusions Our results indicate that in kiwifruit the NAC TFs AcNAC2–4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Danielle E. Read ◽  
Ananya Gupta ◽  
Karen Cawley ◽  
Laura Fontana ◽  
Patrizia Agostinis ◽  
...  

An important event in the unfolded protein response (UPR) is activation of the endoplasmic reticulum (ER) kinase PERK. The PERK signalling branch initially mediates a prosurvival response, which progresses to a proapoptotic response upon prolonged ER stress. However, the molecular mechanisms of PERK-mediated cell death are not well understood. Here we show that expression of the primary miR-17-92 transcript and mature miRNAs belonging to the miR-17-92 cluster are decreased during UPR. We found that miR-17-92 promoter reporter activity was reduced during UPR in a PERK-dependent manner. Furthermore, we show that activity of the miR-17-92 promoter is repressed by ectopic expression of ATF4 and NRF2. Promoter deletion analysis mapped the region responding to UPR-mediated repression to a site in the proximal region of the miR-17-92 promoter. Hypericin-mediated photo-oxidative ER damage reduced the expression of miRNAs belonging to the miR-17-92 cluster in wild-type but not in PERK-deficient cells. Importantly, ER stress-induced apoptosis was inhibited upon miR-17-92 overexpression in SH-SY5Y and H9c2 cells. Our results reveal a novel function for ATF4 and NRF2, where repression of the miR-17-92 cluster plays an important role in ER stress-mediated apoptosis. Mechanistic details are provided for the potentiation of cell death via sustained PERK signalling mediated repression of the miR-17-92 cluster.


Author(s):  
Feng Zhang ◽  
Qi Xiong ◽  
Hu Tao ◽  
Yang Liu ◽  
Nian Zhang ◽  
...  

Acyl-Coenzyme A oxidase 1 (ACOX1) is the first and rate-limiting enzyme in peroxisomal fatty acid β-oxidation of fatty acids. Previous studies have reported that ACOX1 was correlated with the meat quality of livestock, while the role of ACOX1 in intramuscular adipogenesis of beef cattle and its transcriptional and post-transcriptional regulatory mechanisms remain unclear. In the present study, gain-of-function and loss-of-function assays demonstrated that ACOX1 positively regulated the adipogenesis of bovine intramuscular preadipocytes. The C/EBPα-binding sites in the bovine ACOX1 promoter region at -1142 to -1129 bp, -831 to -826 bp, and -303 to -298 bp were identified by promoter deletion analysis and site-directed mutagenesis. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) further showed that these three regions are C/EBPα-binding sites, both in vitro and in vivo, indicating that C/EBPα directly interacts with the bovine ACOX1 promoter and inhibits its transcription. Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the ACOX1 3’untranslated region (3’UTR). Taken together, our findings suggest that ACOX1, regulated by transcription factor C/EBPα and miR-25-3p, promotes adipogenesis of bovine intramuscular preadipocytes via regulating peroxisomal fatty acid β-oxidation.


2020 ◽  
Vol 33 (11) ◽  
pp. 1330-1339
Author(s):  
Solhee In ◽  
Hyun-Ah Lee ◽  
Jongchan Woo ◽  
Eunsook Park ◽  
Doil Choi

In hot pepper, the sesquiterpene phytoalexin capsidiol is catalyzed by the two final-step enzymes, a sesquiterpene cyclase (EAS) and a hydroxylase (EAH), which are genetically linked and present as head-to-head orientation in the genome. Transcriptomic analysis revealed that a subset of EAS and EAH is highly induced following pathogen infection, suggesting the coregulation of EAS and EAH by a potential bidirectional activity of the promoter (pCaD). A series of the nested deletions of pCaD in both directions verified the bidirectional promoter activity of the pCaD. Promoter deletion analysis revealed that the 226 bp of the adjacent promoter region of EAS and GCC-box in EAH orientation were determined as critical regulatory elements for the induction of each gene. Based on promoter analyses, we generated a set of synthetic promoters to maximize reporter gene expression within the minimal length of the promoter in both directions. We found that the reporter gene expression was remarkably induced upon infection with Phytophthora capsici, Phytophthora infestans, and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 but not with necrotrophic fungi Botrytis cinerea. Our results confirmed the bidirectional activity of the pCaD located between the head-to-head oriented phytoalexin biosynthetic genes in hot pepper. Furthermore, the synthetic promoter modified in pCaD could be a potential tool for pathogen-inducible expression of target genes for developing disease-resistant crops. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2020 ◽  
Author(s):  
Danielle E. Read ◽  
Ananya Gupta ◽  
Karen Cawley ◽  
Laura Fontana ◽  
Patrizia Agostinis ◽  
...  

AbstractAn important event in the unfolded protein response (UPR) is the activation of the endoplasmic reticulum kinase PERK (EIF2AK3). The PERK signalling branch first mediates a prosurvival response, which switches into a proapoptotic response upon prolonged ER stress. However, the molecular mechanisms of PERK-mediated cell death are not well understood. Here we show that expression of the primary miR-17-92 transcript and mature miRNAs belonging to miR-17-92 cluster is decreased during UPR. We found that activity of miR-17-92 promoter reporter was reduced during UPR in a PERK-dependent manner. We show that activity of miR-17-92 promoter is repressed by ectopic expression of ATF4 and NRF2. The promoter deletion analysis and ChIP assays mapped the region responding to UPR-mediated repression to site in the proximal region of the miR-17-92 promoter. Hypericin-mediated photo-oxidative ER damage reduced the expression of miRNAs belonging to miR-17-92 cluster in wild-type but not in PERK-deficient cells. Importantly, ER stress-induced apoptosis was inhibited upon miR-17-92 overexpression in SH-SY5Y and H9c2 cells. Our results reveal a novel function for NRF2, where repression of miR-17-92 cluster by NRF2 plays an important role in ER stress-mediated apoptosis. The data presented here provides mechanistic details how sustained PERK signalling via NRF2 mediated repression of miR-17-92 cluster can potentiate cell death.


2020 ◽  
Vol 21 (7) ◽  
pp. 2261
Author(s):  
Guiping Wang ◽  
Guanghui Yu ◽  
Yongchao Hao ◽  
Xinxin Cheng ◽  
Jinxiao Zhao ◽  
...  

Plant epidermis serves important functions in shoot growth, plant defense and lipid metabolism, though mechanisms of related transcriptional regulation are largely unknown. Here, we identified cis-elements specific to shoot epidermis expression by dissecting the promoter of Triticum aestivum lipid transfer protein 1 (TaLTP1). A preliminary promoter deletion analysis revealed that a truncated fragment within 400 bp upstream from the translation start site was sufficient to confer conserved epidermis-specific expression in transgenic Brachypodium distachyon and Arabidopsis thaliana. Further, deletion or mutation of a GC(N4)GGCC motif at position −380 bp caused a loss of expression in pavement cells. With an electrophoretic mobility shift assay (EMSA) and transgenic reporter assay, we found that a light-responsive CcATC motif at position −268 bp was also involved in regulating pavement cell-specific expression that is evolutionary conserved. Moreover, expression specific to leaf trichome cells was found to be independently regulated by a CCaacAt motif at position −303 bp.


2020 ◽  
Vol 86 (10) ◽  
Author(s):  
Haowen Shi ◽  
Yongbin Li ◽  
Tianyi Hao ◽  
Xiaomeng Liu ◽  
Xiyun Zhao ◽  
...  

ABSTRACT Fnr is a transcriptional regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. Genome sequencing revealed four genes (fnr1, fnr3, fnr5, and fnr7) coding for Fnr proteins in Paenibacillus polymyxa WLY78. Fnr1 and Fnr3 showed more similarity to each other than to Fnr5 and Fnr7. Also, Fnr1 and Fnr3 exhibited high similarity with Bacillus cereus Fnr and Bacillus subtilis Fnr in sequence and structures. Both the aerobically purified His-tagged Fnr1 and His-tagged Fnr3 in Escherichia coli could bind to the specific DNA promoter. Deletion analysis showed that the four fnr genes, especially fnr1 and fnr3, have significant impacts on growth and nitrogenase activity. Single deletion of fnr1 or fnr3 led to a 50% reduction in nitrogenase activity, and double deletion of fnr1 and fnr3 resulted to a 90% reduction in activity. Genome-wide transcription analysis showed that Fnr1 and Fnr3 indirectly activated expression of nif (nitrogen fixation) genes and Fe transport genes under anaerobic conditions. Fnr1 and Fnr3 inhibited expression of the genes involved in the aerobic respiratory chain and activated expression of genes responsible for anaerobic electron acceptor genes. IMPORTANCE The members of the nitrogen-fixing Paenibacillus spp. have great potential to be used as a bacterial fertilizer in agriculture. However, the functions of the fnr gene(s) in nitrogen fixation and other metabolisms in Paenibacillus spp. are not known. Here, we found that in P. polymyxa WLY78, Fnr1 and Fnr3 were responsible for regulation of numerous genes in response to changes in oxygen levels, but Fnr5 and Fnr7 exhibited little effect. Fnr1 and Fnr3 indirectly or directly regulated many types of important metabolism, such as nitrogen fixation, Fe uptake, respiration, and electron transport. This study not only reveals the function of the fnr genes of P. polymyxa WLY78 in nitrogen fixation and other metabolisms but also will provide insight into the evolution and regulatory mechanisms of fnr in Paenibacillus.


2019 ◽  
Author(s):  
Zhaojun Yang ◽  
Ying He ◽  
Yanxing Liu ◽  
Yelin Lai ◽  
Jiakun Zheng ◽  
...  

ABSTRACTThough root architecture modifications may be critically important for improving phosphorus (P) efficiency in crops, the regulatory mechanisms triggering these changes remain unclear. In this study, we demonstrate that genotypic variation in GmEXPB2 expression is strongly correlated with root elongation and P acquisition efficiency, and enhancing its transcription significantly improves soybean yield in the field. Promoter deletion analysis was performed using six 5’ truncation fragments (P1-P6) of GmEXPB2 fused with the GUS reporter gene in transgenic hairy roots, which revealed that the P1 segment containing 3 E-box elements significantly enhances induction of gene expression in response to phosphate (Pi) starvation. Further experimentation demonstrated that GmPTF1, a bHLH transcription factor, is the regulatory factor responsible for the induction of GmEXPB2 expression in response to Pi starvation. In short, Pi starvation induced expression of GmPTF1, with the GmPTF1 product not only directly binding the E-box motif in the P1 region of the GmEXPB2 promoter, but also activating GUS expression in a dosage dependent manner. Further work with soybean transgenic composite plants showed that, altering GmPTF1 expression significantly impacted GmEXPB2 transcription, and thereby affected root growth, biomass and P uptake. Taken together, this work identifies a novel regulatory factor, GmPTF1, involved in changing soybean root architecture through regulation the expression of GmEXPB2. These findings contribute to understanding the molecular basis of root architecture modifications in response to P deficiency, and, in the process, suggest candidate genes and a promoter region to target for improving soybean yield through molecular breeding of P efficiency.One Sentence SummaryThe bHLH transcription factor GmPTF1 regulates the expression of β-expansin gene GmEXPB2 to modify root architecture, and thus promote phosphate acquisition, and biomass in soybean.


2019 ◽  
Vol 46 (4) ◽  
pp. 376
Author(s):  
Aniversari Apriana ◽  
Atmitri Sisharmini ◽  
Hajrial Aswidinnoor ◽  
Kurniawan R. Trijatmiko ◽  
Sudarsono Sudarsono

Root-specific promoters are useful in plant genetic engineering, primarily to improve water and nutrient absorption. The aim of this study was to clone and characterise the promoter of the Oryza sativa L. alkenal reductase (OsAER1) gene encoding 2-alkenal reductase, an NADPH-dependent oxidoreductase. Expression analysis using quantitative real-time PCR confirmed the root-specific expression of the OsAER1 gene. Subsequently, a 3082-bp fragment of the OsAER1 promoter was isolated from a local Indonesian rice cultivar, Awan Kuning. Sequencing and further nucleotide sequence analysis of the 3082-bp promoter fragment (PA-5) revealed the presence of at least 10 root-specific cis-regulatory elements putatively responsible for OsAER1 root-specific expression. Using the 3082-bp promoter fragment to drive the expression of the GUS reporter transgene confirmed that the OsAER1 promoter is root-specific. Further, the analysis indicated that OsAER1 promoter activity was absent in leaves, petioles and shoots during sprouting, vegetative, booting and generative stages of rice development. In contrast, the promoter activity was present in anthers and aleurone layers of immature seeds 7–20 days after anthesis. Moreover, there was no promoter activity observed in the aleurone layers of mature seeds. The OsAER1 promoter activity is induced by Al-toxicity, NaCl and submergence stresses, indicating the OsAER1 promoter activity is induced by those stresses. Exogenous treatments of transgenic plants carrying the PA-5 promoter construct with abscisic acid and indoleacetic acid also induced expression of the GUS reporter transgene, indicating the role of plant growth regulators in controlling OsAER1 promoter activity. Promoter deletion analysis was conducted to identify the cis-acting elements of the promoter responsible for controlling root-specific expression. The GUS reporter gene was fused with various deletion fragments of the OsAER1 promoter and the resulting constructs were transformed in rice plants to generate transgenic plants. The results of this analysis indicated that cis-acting elements controlling root-specific expression are located between −1562 to −1026bp of the OsAER1 CDS. Here we discusses the results of the conducted analyses, the possible role of OsAER1 in rice growth and development, possible contributions and the potential usage of these findings in future plant research.


Sign in / Sign up

Export Citation Format

Share Document