scholarly journals Multivoxel Neural Reinforcement Changes Resting-State Functional Connectivity Within the Threat Regulation Network

Author(s):  
Vincent Taschereau-Dumouchel ◽  
Toshinori Chiba ◽  
Ai Koizumi ◽  
Mitsuo Kawato ◽  
Hakwan Lau

AbstractUsing neural reinforcement, participants can be trained to pair a reward with the activation of specific multivoxel patterns in their brains. In a double-blind placebo-controlled experiment, we previously showed that this intervention can decrease the physiological reactivity associated with naturally feared animals. However, the mechanisms behind the effect remain incompletely understood and its usefulness for treatment remains unclear. If the intervention fundamentally changed the brain responses, we might expect to observe relatively stable changes in the functional connectivity within the threat regulation network. To evaluate this possibility, we conducted functional magnetic resonance imaging (fMRI) sessions while subjects were at rest, before and after neural reinforcement, and quantified the changes in resting-state functional connectivity accordingly. Our results indicate that neural reinforcement increased the connectivity of prefrontal regulatory regions with the amygdala and the ventral temporal cortex (where the visual representations of phobic targets are). Surprisingly, we found no evidence of Hebbian-like learning during neural reinforcement, contrary to what one may expect based on previous neurofeedback studies. These results suggest that multivoxel neural reinforcement, also known as decoded neurofeedback (DecNef), may operate via unique mechanisms, distinct from those involved in conventional neurofeedback.

2020 ◽  
Author(s):  
Jian Kong ◽  
Yiting Huang ◽  
Jiao Liu ◽  
Siyi Yu ◽  
Ming Cheng ◽  
...  

Abstract Background: This study aims to investigate the resting state functional connectivity (rsFC) changes of the hypothalamus in Fibromyalgia patients and the modulation effect of effective treatments. Methods: Fibromyalgia patients and matched healthy controls (HC’s) were recruited. Resting state fMRI data were collected from fibromyalgia patients before and after a 12-week Tai Chi intervention and once from HC’s. Results: Data analysis showed that fibromyalgia patients displayed significantly decreased medial hypothalamus (MH) rsFC with the thalamus and amygdala when compared to HC’s at baseline. After the intervention, fibromyalgia patients showed increased (normalized) MH rsFC in the thalamus and amygdala. Effective connectivity analysis showed disrupted MH and thalamus interaction in fibromyalgia, which nonetheless could be partially restored by Tai Chi. Conclusions: Elucidating the role of the diencephalon and limbic system in the pathophysiology and development of fibromyalgia may facilitate the development of new treatment methods for this prevalent disorder. Trial registration: Trial registration ClinicalTrials.gov Identifier: NCT02407665. Registered 3 April 2015 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02407665


2019 ◽  
Vol 237 (2) ◽  
pp. 443-451 ◽  
Author(s):  
Grant McQueen ◽  
Aderlee Lay ◽  
John Lally ◽  
Anthony S. Gabay ◽  
Tracy Collier ◽  
...  

Abstract Rationale There is interest in employing N-acetylcysteine (NAC) in the treatment of schizophrenia, but investigations of the functional signatures of its pharmacological action are scarce. Objectives The aim of this study was to identify the changes in resting-state functional connectivity (rs-FC) that occur following administration of a single dose of NAC in patients with schizophrenia. A secondary aim was to examine whether differences in rs-FC between conditions were mediated by glutamate metabolites in the anterior cingulate cortex (ACC). Methods In a double-blind, placebo-controlled crossover design, 20 patients with schizophrenia had two MRI scans administered 7 days apart, following oral administration of either 2400 mg NAC or placebo. Resting state functional fMRI (rsfMRI) assessed the effect of NAC on rs-FC within the default mode network (DMN) and the salience network (SN). Proton magnetic resonance spectroscopy was used to measure Glx/Cr (glutamate plus glutamine, in ratio to creatine) levels in the ACC during the same scanning sessions. Results Compared to the placebo condition, the NAC condition was associated with reduced within the DMN and SN, specifically between the medial pre-frontal cortex to mid frontal gyrus, and ACC to frontal pole (all p < 0.04). There were no significant correlations between ACC Glx/Cr and rs-FC in either condition (p > 0.6). Conclusions These findings provide preliminary evidence that NAC can reduce medial frontal rs-FC in schizophrenia. Future studies assessing the effects of NAC on rs-FC in early psychosis and on repeated administration in relation to efficacy would be of interest.


2018 ◽  
Vol 115 (9) ◽  
pp. 2222-2227 ◽  
Author(s):  
Nicco Reggente ◽  
Teena D. Moody ◽  
Francesca Morfini ◽  
Courtney Sheen ◽  
Jesse Rissman ◽  
...  

Cognitive behavioral therapy (CBT) is an effective treatment for many with obsessive–compulsive disorder (OCD). However, response varies considerably among individuals. Attaining a means to predict an individual’s potential response would permit clinicians to more prudently allocate resources for this often stressful and time-consuming treatment. We collected resting-state functional magnetic resonance imaging from adults with OCD before and after 4 weeks of intensive daily CBT. We leveraged machine learning with cross-validation to assess the power of functional connectivity (FC) patterns to predict individual posttreatment OCD symptom severity. Pretreatment FC patterns within the default mode network and visual network significantly predicted posttreatment OCD severity, explaining up to 67% of the variance. These networks were stronger predictors than pretreatment clinical scores. Results have clinical implications for developing personalized medicine approaches to identifying individual OCD patients who will maximally benefit from intensive CBT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ramana V. Vishnubhotla ◽  
Rupa Radhakrishnan ◽  
Kestas Kveraga ◽  
Rachael Deardorff ◽  
Chithra Ram ◽  
...  

Purpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI).Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity.Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p &lt; 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p &lt; 0.01).Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama.Clinical Trials Registration: [https://clinicaltrials.gov], Identifier: [NCT04366544]. Registered on 4/17/2020.


2020 ◽  
Vol 4 ◽  
pp. 247054702096656
Author(s):  
Sarat Munjuluri ◽  
Peter K. Bolin ◽  
Y. T. Amy Lin ◽  
Nina L. Garcia ◽  
Leslie Gauna ◽  
...  

Background Natural disasters can affect mental health and result in symptoms of depression, anxiety, and post-traumatic stress disorder (PTSD). Playback Theatre (PT) is a form of improvisation where actors play-back personal stories told by audience members. Whether PT can be therapeutic in post-disaster settings is not known. Method We used a series of PT performances and studied levels of depression, anxiety, and PTSD symptoms in a sample of 13 people affected by Hurricane Harvey that happened in Houston, TX, August 2017. Brain imaging, specifically resting state functional connectivity of the amygdala was also studied before and after the PT performances. Results Both anxiety ( p = .001, Cohen’s d = –1.25) and PTSD ( p = .002, Cohen’s d = –1.0) symptoms significantly decreased after a series of 4 PT performances from January 2019 – February 2019. Depression reduction was not significant. We performed resting state functional connectivity (RSFC) MRI before and after the series of performances. We used the right and left amygdala as seeds for RSFC analysis and found that the connectivity between the left amygdala and the bilateral supramarginal gyri was increased after PT. The bilateral supramarginal connectivity with the default mode and the saliency networks increased too, which correlated with reduction in anxiety scores. Conclusions PT may offer a form of intervention for anxiety caused by disasters. An increase in left amygdala/supramarginal gyri connectivity may be the underlying mechanism.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Velicia Bachtiar ◽  
Jamie Near ◽  
Heidi Johansen-Berg ◽  
Charlotte J Stagg

We previously demonstrated that network level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (<xref ref-type="bibr" rid="bib24">Stagg et al., 2014</xref>). In this study, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 min of 1 mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex; these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.


Author(s):  
Joshua Hendrikse ◽  
James Coxon ◽  
Sarah Thompson ◽  
Chao Suo ◽  
Alex Fornito ◽  
...  

AbstractTranscranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique with the capacity to modulate brain network connectivity and cognitive function. Recent studies have demonstrated long-lasting improvements in associative memory and resting-state connectivity following multi-day repetitive TMS (rTMS) to individualised parietal-hippocampal networks. We aimed to assess the reproducibility and network- and cognitive-specificity of these effects following multi-day rTMS. Participants received four days of 20 Hz rTMS to a subject-specific region of left lateral parietal cortex exhibiting peak functional connectivity to the left hippocampus. In a separate week, the same stimulation protocol was applied to a subject-specific region of pre-supplementary motor area (pre-SMA) exhibiting peak functional connectivity to the left putamen. We assessed changes to associative memory before and after each week of stimulation (N = 39), and changes to resting-state functional connectivity before and after stimulation in week one (N = 36). We found no evidence of long-lasting enhancement of associative memory or increased parieto-hippocampal connectivity following multi-day rTMS to the parietal cortex, nor increased pre-SMA-putamen connectivity following multi-day rTMS to pre-SMA. Instead, we observed some evidence of site-specific modulations of functional connectivity lasting ∼24 hours, with reduced connectivity within targeted networks and increased connectivity across distinct non-targeted networks. Our findings suggest a complex interplay between multi-day rTMS and network connectivity. Further work is required to develop reliable rTMS paradigms for driving changes in functional connectivity between cortical and subcortical regions.


2021 ◽  
Author(s):  
Maxi Becker ◽  
Dimitris Repantis ◽  
Martin Dresler ◽  
Simone Kuehn

Stimulants like methylphenidate, modafinil and caffeine have repeatedly shown to enhance cognitive processes such as attention and memory. However, brain-functional mechanisms underlying such cognitive enhancing effects of stimulants are still poorly characterized. Here, we utilized behavioral and resting-state fMRI data from a double-blind randomized placebo-controlled study of methylphenidate, modafinil and caffeine in 48 healthy male adults. The results show that performance in different memory tasks is enhanced, and functional connectivity (FC) specifically between the fronto-parietal (FPN) and default mode (DMN) network is modulated by the stimulants in comparison to placebo. Decreased negative connectivity between right prefrontal and medial parietal but also between medial temporal lobe and visual brain regions predicted stimulant-induced latent memory enhancement. We discuss dopamine's role in attention and memory as well as its ability to modulate FC between large-scale neural networks (e.g. FPN and DMN) as a potential cognitive enhancement mechanism.


Sign in / Sign up

Export Citation Format

Share Document