scholarly journals A Molecular Mechanism for Turning off IRE1α Signaling During Endoplasmic Reticulum Stress

2020 ◽  
Author(s):  
Xia Li ◽  
Sha Sun ◽  
Suhila Appathurai ◽  
Arunkumar Sundaram ◽  
Rachel Plumb ◽  
...  

SummaryMisfolded proteins in the endoplasmic reticulum (ER) activate IRE1α endoribonuclease in mammalian cells, which mediates XBP1 mRNA splicing to produce an active transcription factor. This promotes the expression of specific genes to alleviate ER stress and thereby attenuating IRE1α. Although sustained activation of IRE1α is linked to human diseases, it is not clear how IRE1α is attenuated during ER stress. Here, we identify that Sec63 is a subunit of the previously identified IRE1α/Sec61 translocon complex. We find that Sec63 recruits and activates BiP ATPase through its luminal J-domain to bind onto IRE1α. This leads to inhibition of higher-order oligomerization and attenuation of IRE1α RNase activity during prolonged ER stress. In Sec63 deficient cells, IRE1α remains activated for a long time despite the presence of excess BiP in the ER. Thus, our data suggest that the Sec61 translocon bridges IRE1α with Sec63/BiP to regulate the dynamics of IRE1α signaling in cells.

2003 ◽  
Vol 23 (4) ◽  
pp. 449-461 ◽  
Author(s):  
Wulf Paschen ◽  
Christoph Aufenberg ◽  
Svenja Hotop ◽  
Thorsten Mengesdorf

Cells respond to conditions associated with endoplasmic reticulum (ER) dysfunction with activation of the unfolded protein response, characterized by a shutdown of translation and induction of the expression of genes coding for ER stress proteins. The genetic response is based on IRE1-induced processing of xbp1 messenger RNA (mRNA), resulting in synthesis of new XBP1proc protein that functions as a potent transcription factor for ER stress genes. xbp1 processing in models of transient global and focal cerebral ischemia was studied. A marked increase in processed xbp1 mRNA levels during reperfusion was observed, most pronounced (about 35-fold) after 1-h occlusion of the right middle cerebral artery. The rise in processed xbp1 mRNA was not paralleled by a similar increase in XBP1proc protein levels because transient ischemia induces severe suppression of translation. As a result, mRNA levels of genes coding for ER stress proteins were only slightly increased, whereas mRNA levels of heat-shock protein 70 rose about 550-fold. Under conditions associated with ER dysfunction, cells require activation of the entire ER stress-induced signal transduction pathway, to cope with this severe form of stress. After transient cerebral ischemia, however, the block of translation may prevent synthesis of new XBP1proc protein and thus hinder recovery from ischemia-induced ER dysfunction.


2000 ◽  
Vol 346 (2) ◽  
pp. 281-293 ◽  
Author(s):  
Ruchira SOOD ◽  
Amy C. PORTER ◽  
Kun MA ◽  
Lawrence A. QUILLIAM ◽  
Ronald C. WEK

In response to different cellular stresses, a family of protein kinases regulates translation by phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF-2α). Recently, we identified a new family member, pancreatic eIF-2α kinase (PEK) from rat pancreas. PEK, also referred to as RNA-dependent protein kinase (PKR)-like endoplasmic reticulum (ER) kinase (PERK) is a transmembrane protein implicated in translational control in response to stresses that impair protein folding in the ER. In this study, we identified and characterized PEK homologues from humans, Drosophila melanogaster and Caenorhabditis elegans. Expression of human PEK mRNA was found in over 50 different tissues examined, with highest levels in secretory tissues. In mammalian cells subjected to ER stress, we found that elevated eIF-2α phosphorylation was coincident with increased PEK autophosphorylation and eIF-2α kinase activity. Activation of PEK was abolished by deletion of PEK N-terminal sequences located in the ER lumen. To address the role of C. elegans PEK in translational control, we expressed this kinase in yeast and found that it inhibits growth by hyperphosphorylation of eIF-2α and inhibition of eIF-2B. Furthermore, we found that vaccinia virus K3L protein, an inhibitor of the eIF-2α kinase PKR involved in an anti-viral defence pathway, also reduced PEK activity. These results suggest that decreased translation initiation by PEK during ER stress may provide the cell with an opportunity to remedy the folding problem prior to introducing newly synthesized proteins into the secretory pathway.


2021 ◽  
Author(s):  
Li Chen ◽  
Minshu Ni ◽  
Waqas Ahmed ◽  
Yue Xu ◽  
Xi Bao ◽  
...  

Abstract Pseudorabies virus (PRV) is a pathogen of swine resulting in devastating disease. Some viral infections can cause endoplasmic reticulum (ER) stress and unfolded protein response (UPR) to restore ER homeostasis. However, the mechanism of how PRV induces ER stress and UPR activation remains unclear. Here, levels of proteins or transcriptional factors of three UPR pathways were examined in suspension-cultured BHK-21 cells to investigate PRV-induced ER stress. Results showed that PRV triggered ER stress and UPR of the host cells with the upregulated expression of glucose-related protein 78 kD and 94 kD (GRP78 and GRP94). The protein kinase RNA-like ER kinase (PERK) pathway was activated to upregulate ATF4, CHOP, and GADD34 expression. Additionally, the inositol requiring kinase 1 (IRE1) pathway was triggered by splicing of X box-binding protein 1 (XBP1) mRNA and the enhanced expression of p58IPK and EDEM1. Furthermore, our data demonstrated that PRV took advantage of ER stress to accelerate its replication with the activation of the PERK and IRE1 pathways in suspension-cultured BHK-21 cells, and the glycoprotein B played a crucial role in ER stress.


2020 ◽  
Author(s):  
Zhanna Lipatova ◽  
Valeriya Gyurkovska ◽  
Sarah F. Zhao ◽  
Nava Segev

AbstractThirty percent of all cellular proteins are inserted into the endoplasmic reticulum (ER), which spans throughout the cytoplasm. Two well-established stress-induced pathways ensure quality control (QC) at the ER: ER-phagy and ER-associated degradation (ERAD), which shuttle cargo for degradation to the lysosome and proteasome, respectively. In contrast, not much is known about constitutive ER-phagy. We have previously reported that excess of integral-membrane proteins is delivered from the ER to the lysosome via autophagy during normal growth of yeast cells. Here, we characterize this pathway as constitutive ER-phagy. Constitutive and stress-induced ER-phagy share the basic macro-autophagy machinery including the conserved Atgs and Ypt1 GTPase. However, induction of stress-induced autophagy is not needed for constitutive ER-phagy to occur. Moreover, the selective receptors needed for starvation-induced ER-phagy, Atg39 and Atg40, are not required for constitutive ER-phagy and neither these receptors nor their cargos are delivered through it to the vacuole. As for ERAD, while constitutive ER-phagy recognizes cargo different from that recognized by ERAD, these two ER-QC pathways can partially substitute for each other. Because accumulation of membrane proteins is associated with disease, and constitutive ER-phagy players are conserved from yeast to mammalian cells, this process could be critical for human health.Author SummaryAccumulation of excess proteins can lead to their aggregation, which in turn can cause multiple disorders, notably neurodegenerative disease. Nutritional and endoplasmic-reticulum (ER) stress stimulate autophagy and ER-associated degradation (ERAD) to clear excess and misfolded proteins, respectively. However, not much is known about clearance of excess proteins during normal growth. We have previously shown that excess integral-membrane proteins are cleared from the ER by macro-autophagy during normal growth of yeast cells. Here we characterize this pathway as constitutive ER-phagy. While this pathway shares machinery of core Atgs and autophagosomes with nutritional stress-induced ER-phagy, it differs from the latter: It is independent of the stress response and of receptors needed for stress-induced ER-phagy, and while stress-induced ER-phagy is not discriminatory, constitutive ER-phagy has specific cargos. However, when constitutive ER-phagy fails, machinery specific to stress-induced ER-phagy can process its cargo. Moreover, constitutive ER-phagy is also not dependent on ER-stress or the unfolded protein response (UPR) stimulated by this stress, although its failure elicits UPR. Finally, constitutive ER-phagy and ERAD can partially process each other’s cargo upon failure. In summary, constitutive ER-phagy, which clears excess integral-membrane proteins from the ER during normal growth does not require nutritional or ER stress for its function.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Madlen Stephani ◽  
Lorenzo Picchianti ◽  
Alexander Gajic ◽  
Rebecca Beveridge ◽  
Emilio Skarwan ◽  
...  

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.


2011 ◽  
Vol 17 (2) ◽  
pp. 275-279 ◽  
Author(s):  
Annemarie van Schadewijk ◽  
Emily F. A. van’t Wout ◽  
Jan Stolk ◽  
Pieter S. Hiemstra

1997 ◽  
Vol 8 (10) ◽  
pp. 1845-1862 ◽  
Author(s):  
Tetsushi Kawahara ◽  
Hideki Yanagi ◽  
Takashi Yura ◽  
Kazutoshi Mori

An intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, called the unfolded protein response (UPR), is activated when unfolded proteins are accumulated in the ER under a variety of stress conditions (“ER stress”). We and others recently identified Hac1p/Ern4p as a transcription factor responsible for the UPR inSaccharomyces cerevisiae. It was further reported that Hac1p (238 aa) is detected only in ER-stressed cells, and its expression is mediated by unconventional splicing ofHAC1 precursor mRNA. The splicing replaces the C-terminal portion of Hac1p; it was proposed that precursor mRNA is also translated but the putative product of 230 aa is rapidly degraded by the ubiquitin–proteasome pathway. We have identified and characterized the same regulated splicing and confirmed its essential features. Contrary to the above proposal, however, we find that the 238-aa product of mature mRNA and the 230-aa-type protein tested are highly unstable with little or no difference in stability. Furthermore, we demonstrate that the absence of Hac1p in unstressed cells is due to the lack of translation of precursor mRNA. We conclude that Hac1p is synthesized as the result of ER stress-induced mRNA splicing, leading to activation of the UPR.


Sign in / Sign up

Export Citation Format

Share Document