scholarly journals Disseminating cells in human tumours acquire an EMT stem cell state that is predictive of metastasis

Author(s):  
Gehad Youssef ◽  
Luke Gammon ◽  
Leah Ambler ◽  
Bethan Wicker ◽  
Swatisha Patel ◽  
...  

AbstractCancer stem cells undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. Here, we identify an EMT stem cell state that retains EpCAM and CD24 after undergoing EMT and exhibits enhanced plasticity. This afforded the opportunity to investigate whether retention of EpCAM and CD24 alongside upregulation of the EMT marker Vimentin can identify disseminating EMT stem cells in human oral cancer specimens. Examining disseminating tumour cells in the stromal region of 3500 imaging fields from 24 human oral cancer specimens, evenly divided into metastatic and non-metastatic specimens, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells in metastatic specimens. Through training an artificial neural network on the EpCAM, CD24 and Vimentin co-staining, we predict metastasis with high accuracy (F1 0.91; AUC 0.87). We have observed, for the first time, disseminating EMT stem cells in patient histological specimens and demonstrated their utility for predicting metastatic disease.

2018 ◽  
Author(s):  
Audrey T. Lin ◽  
Cindy G. Santander ◽  
Fabricia F. Nascimento ◽  
Emanuele Marchi ◽  
Timokratis Karamitros ◽  
...  

AbstractEndogenous retroviruses (ERVs) are remnants of ancient retroviral infections that make up 8% of the human genome. Although these elements are mostly fragmented and inactive, many proviruses belonging to the HERV-K (HML-2) family, the youngest lineage in the human genome, have intact open reading frames, some encoding for accessory genes called np9 and rec that interact with oncogenic pathways. Many studies have established that ERVs are transiently expressed in both stem cells and cancer, resulting in aberrant self-renewal and uncontrolled proliferation. np9 and rec expression are significantly correlated with a range of cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) biomarkers, including cellular receptors, transcription factors, and histone modifiers. Surprisingly, these ERV genes are negatively correlated with genes known to promote pluripotency in embryonic stem cell lines, such as Oct4. These results indicate that HERV-K (HML-2) is part of the transcriptional landscape responsible for cancer cells undergoing the phenotypic switch that characterises EMT. The discovery of np9 and rec’s correlation with CSC and EMT biomarkers suggest a yet undescribed role affecting the transitional CSC-like state in EMT and the shift towards cancer malignancy.ImportanceIn this study, we find that human endogenous retrovirus HERV-K (HML-2)-encoded genes np9 and rec are correlated with the expression of many biomarkers associated with cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT). There has been a significant effort to develop novel treatments targeting CSC and EMT-specific signalling pathways and cell surface markers. This research describes HERV-K (HML-2) as interacting or being part of the regulatory network that make up reversible cell state switching in EMT. Our findings suggest these specific HERVs may be good candidate biomarkers in identifying the transitional CSC-like states that are present during the progression of EMT and cancer metastasis.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Cord Naujokat ◽  
Roman Steinhart

Cancer stem cells (CSCs) represent a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of malignant cells that comprise a tumor. CSCs possess multiple intrinsic mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs, and radiation therapy, allowing them to survive standard cancer therapies and to initiate tumor recurrence and metastasis. Various molecular complexes and pathways that confer resistance and survival of CSCs, including expression of ATP-binding cassette (ABC) drug transporters, activation of the Wnt/β-catenin, Hedgehog, Notch and PI3K/Akt/mTOR signaling pathways, and acquisition of epithelial-mesenchymal transition (EMT), have been identified recently. Salinomycin, a polyether ionophore antibiotic isolated fromStreptomyces albus, has been shown to kill CSCs in different types of human cancers, most likely by interfering with ABC drug transporters, the Wnt/β-catenin signaling pathway, and other CSC pathways. Promising results from preclinical trials in human xenograft mice and a few clinical pilote studies reveal that salinomycin is able to effectively eliminate CSCs and to induce partial clinical regression of heavily pretreated and therapy-resistant cancers. The ability of salinomycin to kill both CSCs and therapy-resistant cancer cells may define the compound as a novel and an effective anticancer drug.


2016 ◽  
Vol 97 (11) ◽  
pp. 2939-2948 ◽  
Author(s):  
Molly E. Church ◽  
Marko Estrada ◽  
Christian M. Leutenegger ◽  
Florante N. Dela Cruz ◽  
Patricia A. Pesavento ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 466-466 ◽  
Author(s):  
Eric R. Lechman ◽  
Kristin J. Hope ◽  
Fernando J. Suarez Saiz ◽  
Katsuto Takenaka ◽  
Carlo M. Croce ◽  
...  

Abstract MicroRNAs (miRNAs) are a new class of non-coding small RNAs that negatively regulate the expression of protein-encoding genes. Mature miRNAs are excised sequentially from primary miRNA (pri-miRNA) foldback precursor transcripts, and regulate gene expression at the post-transcriptional level. miRNAs functionally suppress gene expression by either inhibition of protein synthesis or by direct cleavage of the target mRNA. miRNA expression is tissue and developmental stage restricted, suggesting important roles in tissue specification and/or cell lineage determination. miRNAs are implicated in the regulation of diverse processes including cell growth control, apoptosis, fat metabolism and insulin secretion, and may be involved in the maintenance of the embryonic stem cell state. Several recent lines of evidence suggest a role for miRNAs in hematological malignancies. Many characterized miRNAs are located at fragile sites, minimal loss of heterozygosity regions, minimal regions of amplification or common breakpoint regions in human cancers. For example, chromosomal translocation t(8;17) in an aggressive B-cell leukemia results in fusion of miR-142 precursor and a truncated MYC gene. Furthermore, both miR-15 and miR-16 are located within a 30 kb deletion in CLL, and in most cases of this cancer both genes are deleted or underexpressed. In addition, mice transplanted with hematopoietic stem cells (HSC) overexpressing both c-Myc and the miR-17–92 polycistron developed cancers earlier with a more aggressive nature when compared to lymphomas generated by c-myc alone. To address the role of miRNAs in the regulation and maintenance of the hematopoietic stem cell state and leukemogenesis, we sorted 6 primary AML patient samples into 4 populations based on the expression of CD34/CD38 and performed miRNA array analysis. We identified a subset of miRNAs whose expression profile could discriminate the CD34+/CD38- fractions from more mature populations. In particular, BIC/miR-155 was found to be over-expressed in leukemic stem cells (LSC). Validation by qRT-PCR revealed this expression pattern in 5 of the 6 sorted AML samples. Furthermore, within umbilical cord blood (CB) cells, BIC/miR-155 is more highly expressed in the primitive CD34+38- fraction as compared to mature sub-fractions as assessed by Affymetrix microarray. miRNA array analysis also revealed elevated levels of miR-155 in bulk primary AMLs as compared to normal BM. Intriguingly, BIC/miR-155 was first identified as a common retroviral insertion site in avian leucosis virus induced B cell lymphomas, and BIC/miR-155 overexpression has been observed in all subtypes of Hodgkin’s lymphoma. To test the hypothesis that miR-155 is important in LSC/HSC function, we designed lentiviral vectors for RNAi mediated knockdown of BIC/miR-155. Knockdown of BIC/miR-155 within a novel CD34+ leukemic cell line resulted in a loss of CD34 expression and reduced proliferative potential. Additionally, knockdown within CB led to alterations in colony forming capacity. Additionally, we have recently generated lentiviral vectors for the enforced overexpression of BIC/miR-155. In vivo studies to investigate the effects of BIC/miR-155 over-expression and knockdown are ongoing and will be discussed.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2444-2444
Author(s):  
Il-Hoan Oh ◽  
Kim Tae-Min ◽  
Jae-Seung Shim

Abstract Multiple transcription factors (TFs) that regulate the self-renewal/stem cell state of hematopoietic stem cells (HSCs) have been identified, but understanding the molecular interplay of these TFs for their functional coordination remains a challenging issue. In this study, we investigated the functional integration and transcriptional coordination of STAT3 and HoxB4, which are TFs known to have similar effects on the self-renewal of HSCs. We found that while STAT3 (STAT3-C) or HoxB4 similarly enhanced the in vitro self-renewal and in vivo repopulating activities of HSCs, simultaneous transduction of both STAT3-C and HoxB4 did not have any additive enhancing effects. In contrast, the overexpression of HoxB4 caused a ligand-independent Tyr-phosphorylation in STAT3, and the inhibition of the STAT3 activity in HoxB4-overexpressing bone marrow cells significantly abrogated the enhancing effects of HoxB4 on both the bone marrow repopulation and maintenance of the undifferentiated state, revealing a molecular integration of these two TFs for HSC self-renewal. Expression microarray analysis revealed a significant overlap of the transcriptomes regulated by STAT3 and HoxB4 in undifferentiated hematopoietic cells. Moreover, a gene set enrichment analysis (GSEA) for TFs that can recapitulate the transcriptional changes induced by HoxB4 or STAT3 showed significant overlap in the candidate TFs. Interestingly, among these identified TFs were the puripotency-related genes, Oct-4 and Nanog. These results indicate the functional integration of tissue-specific TFs for HSC self-renewal and provide insights into the functional convergence of various TFs towards a conserved transcription program for the stem cell state. Disclosures: No relevant conflicts of interest to declare.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769591 ◽  
Author(s):  
Sheefa Mirza ◽  
Nayan Jain ◽  
Rakesh Rawal

Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial–mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(−) population in circulation not only exhibit stem cell–related genes but also possess epithelial–mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell–based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.


Author(s):  
Satish Kumar Tiwari ◽  
Sudip Mandal

Over the years, Drosophila has served as a wonderful genetically tractable model system to unravel various facets of tissue-resident stem cells in their microenvironment. Studies in different stem and progenitor cell types of Drosophila have led to the discovery of cell-intrinsic and extrinsic factors crucial for stem cell state and fate. Though initially touted as the ATP generating machines for carrying various cellular processes, it is now increasingly becoming clear that mitochondrial processes alone can override the cellular program of stem cells. The last few years have witnessed a surge in our understanding of mitochondria’s contribution to governing different stem cell properties in their subtissular niches in Drosophila. Through this review, we intend to sum up and highlight the outcome of these in vivo studies that implicate mitochondria as a central regulator of stem cell fate decisions; to find the commonalities and uniqueness associated with these regulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document