scholarly journals The FDA-approved drugs ticlopidine, sertaconazole, and dexlansoprazole can cause morphological changes in C. elegans

2020 ◽  
Author(s):  
Kyle F Galford ◽  
Antony M Jose

AbstractUrgent need for treatments limit studies of therapeutic drugs before approval by regulatory agencies. Analyses of drugs after approval can therefore improve our understanding of their mechanism of action and enable better therapies. We screened a library of 1443 Food and Drug Administration (FDA)-approved drugs using a simple assay in the nematode C. elegans and found three compounds that caused morphological changes. While the anticoagulant ticlopidine and the antifungal sertaconazole caused morphologically distinct pharyngeal defects upon acute exposure, the proton-pump inhibitor dexlansoprazole caused molting defects and required exposure during larval development. Such easily detectable defects in a powerful genetic model system advocate the continued exploration of current medicines using a variety of model organisms to better understand drugs already prescribed to millions of patients.

Author(s):  
Salman Sohrabi ◽  
Danielle E. Mor ◽  
Rachel Kaletsky ◽  
William Keyes ◽  
Coleen T. Murphy

AbstractWe recently linked branched-chain amino acid transferase 1 (BCAT1) with the movement disorder Parkinson’s disease (PD), and found that reduction of C. elegans bcat-1 causes abnormal spasm-like ‘curling’ behavior with age. Here, we report the development of a high-throughput automated curling assay and its application to the discovery of new potential PD therapeutics. Four FDA-approved drugs were identified as candidates for late-in-life intervention, with metformin showing the greatest promise for repurposing to PD.


Author(s):  
Jiaxing Li ◽  
Catherine A. Collins

In the face of acute or chronic axonal damage, neurons and their axons undergo a number of molecular, cellular, and morphological changes. These changes facilitate two types of responses, axonal degeneration and regeneration, both of which are remarkably conserved in both vertebrates and invertebrates. Invertebrate model organisms, including Drosophila and C. elegans, have offered a powerful platform with accessible genetic tools for manipulation and amenable nervous system for visualization. Thus far, several critical components and pathways in axonal degeneration and regeneration have been identified in invertebrate studies, including Sarm and Wallenda/DLK. This article highlights important findings in Drosophila, C. elegans, and other invertebrate injury models that have shed light upon the mechanism in axonal injury response.


2020 ◽  
Vol 29 (5) ◽  
pp. 756-765 ◽  
Author(s):  
Dmytro Kukhtar ◽  
Karinna Rubio-Peña ◽  
Xènia Serrat ◽  
Julián Cerón

Abstract CRISPR/Cas and the high conservation of the spliceosome components facilitate the mimicking of human pathological mutations in splicing factors of model organisms. The degenerative retinal disease retinitis pigmentosa (RP) is caused by mutations in distinct types of genes, including missense mutations in splicing factors that provoke RP in an autosomal dominant form (s-adRP). Using CRISPR in Caenorhabditis elegans, we generated mutant strains to mimic s-adRP mutations reported in PRPF8 and SNRNP200. Whereas these inherited mutations are present in heterozygosis in patients, C. elegans allows the maintenance of these mutations as homozygotes, which is advantageous for genetic and drug screens. We found that snrp-200(cer23[V676L]) and prp-8(cer14[H2302del]) display pleiotropic phenotypes, including reduced fertility. However, snrp-200(cer24[S1080L]) and prp-8(cer22[R2303G]) are weak alleles suitable for RNAi screens for identifying genetic interactions, which could uncover potential disease modifiers. We screened a collection of RNAi clones for splicing-related genes and identified three splicing factors: isy-1/ISY1, cyn-15/PPWD1 and mog-2/SNRPA1, whose partial inactivation may modify the course of the disease. Interestingly, these three genes act as modifiers of prp-8(cer22) but not of snrp-200(cer24). Finally, a screen of the strong allele prp-8(cer14) with FDA-approved drugs did not identify molecules capable of alleviating the temperature-sensitive sterility. Instead, we detected drugs, such as dequalinium chloride, which exacerbated the phenotype, and therefore, are potentially harmful to s-adRP patients since they may accelerate the progression of the disease.


2019 ◽  
Author(s):  
Dmytro Kukhtar ◽  
Karinna Rubio-Peña ◽  
Xènia Serrat ◽  
Julián Cerón

ABSTRACTCRISPR and the high conservation of the spliceosome components facilitate the mimicking of human pathological mutations in splicing factors of model organisms. The degenerative retinal disease Retinitis Pigmentosa (RP) is caused by mutations in distinct types of genes, including missense mutations in splicing factors that provoke RP in an autosomal dominant form (s-adRP). Using CRISPR in C. elegans, we generated mutant strains to mimic RP mutations reported in PRPF8 and SNRNP200. Whereas these inherited mutations are present in heterozygosis in patients, C. elegans allows the maintenance of these mutations in homozygosis, which is advantageous for genetic and drug screens. We found that snrp-200(cer23[V676L]) and prp-8(cer14[H2302del]) display pleiotropic phenotypes, including a reduced fertility. However, snrp-200(cer24[S1080L]) and prp-8(cer22[R2303G]) are weak alleles suitable for RNAi screens to identify genetic interactions, which would uncover potential disease modifiers. We screened a collection of RNAi clones for splicing-related genes and identified three splicing factors, isy-1/ISY1, cyn-15/PPWD1 and mog-2/SNRPA1 whose partial inactivation may modify the course of the disease. Interestingly, these three genes were acting as modifiers of prp-8(cer22) but no snrp-200(cer24).Finally, the strong allele prp-8(cer14) was used in a screen with FDA-approved drugs to find molecules capable of alleviating the phenotype. Instead, we detected drugs, as Dequalinium Chloride, which exacerbated the phenotype and therefore are potentially harmful for s-adRP patients since they may accelerate the progression of the disease.


2012 ◽  
Vol 11 (2) ◽  
pp. 165-179 ◽  
Author(s):  
Elisabeth A. Cox-Paulson ◽  
Theresa M. Grana ◽  
Michelle A. Harris ◽  
Janet M. Batzli

Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2401
Author(s):  
Vuyolwethu Khwaza ◽  
Sithenkosi Mlala ◽  
Opeoluwa O. Oyedeji ◽  
Blessing A. Aderibigbe

Pentacyclic triterpenoids are well-known phytochemicals with various biological activities commonly found in plants as secondary metabolites. The wide range of biological activities exhibited by triterpenoids has made them the most valuable sources of pharmacological agents. A number of novel triterpenoid derivatives with many skeletal modifications have been developed. The most important modifications are the formation of analogues or derivatives with nitrogen-containing heterocyclic scaffolds. The derivatives with nitrogen-containing heterocyclic compounds are among the most promising candidate for the development of novel therapeutic drugs. About 75% of FDA-approved drugs are nitrogen-containing heterocyclic moieties. The unique properties of heterocyclic compounds have encouraged many researchers to develop new triterpenoid analogous with pharmacological activities. In this review, we discuss recent advances of nitrogen-containing heterocyclic triterpenoids as potential therapeutic agents. This comprehensive review will assist medicinal chemists to understand new strategies that can result in the development of compounds with potential therapeutic efficacy.


Author(s):  
V.J. Montpetit ◽  
S. Dancea ◽  
L. Tryphonas ◽  
D.F. Clapin

Very large doses of pyridoxine (vitamin B6) are neurotoxic in humans, selectively affecting the peripheral sensory nerves. We have undertaken a study of the morphological and biochemical aspects of pyridoxine neurotoxicity in an animal model system. Early morphological changes in dorsal root ganglia (DRG) associated with pyridoxine megadoses include proliferation of neurofilaments, ribosomes, rough endoplasmic reticulum, and Golgi complexes. We present in this report evidence of the formation of unique aggregates of microtubules and membranes in the proximal processes of DRG which are induced by high levels of pyridoxine.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document