scholarly journals Local climate and habitat continuity interact to alter contemporary dispersal potential

2020 ◽  
Author(s):  
Lauren L. Sullivan ◽  
Zoe M. Portlas ◽  
Jill A. Hamilton

AbstractUnderstanding the evolution of dispersal under changing global environments is essential to predicting a species ability to track shifting ecological niches. Two important, but anthropogenically altered, sources of selection on dispersal are climate and habitat continuity. Despite the likelihood these global drivers of selection act simultaneously on plant populations, their combined effects on dispersal are rarely examined. To understand the interactive effect of climate and habitat continuity on dispersal potential, we study Geum triflorum - a perennial grassland species that spans a wide range of environments, including both continuous prairie and isolated alvar habitats. We explore how the local climate of the growing season and habitat continuity (continuous vs isolated) interact to alter dispersal potential. We find a consistent interactive effect of local climate and habitat continuity on dispersal potential. Across continuous prairie populations, an increased number of growing degree days favors traits that increase dispersal potential. However, for isolated alvar populations, dispersal potential tends to decrease as the number of growing degree days increase. Our findings suggest that under continued warming, populations in continuous habitats will benefit from increased gene flow, while isolated populations will become increasingly segregated, with reduced potential to track shifting fitness optima.

2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ewa Pyrka ◽  
Gerard Kanarek ◽  
Grzegorz Zaleśny ◽  
Joanna Hildebrand

Abstract Background Leeches (Hirudinida) play a significant role as intermediate hosts in the circulation of trematodes in the aquatic environment. However, species richness and the molecular diversity and phylogeny of larval stages of strigeid trematodes (tetracotyle) occurring in this group of aquatic invertebrates remain poorly understood. Here, we report our use of recently obtained sequences of several molecular markers to analyse some aspects of the ecology, taxonomy and phylogeny of the genera Australapatemon and Cotylurus, which utilise leeches as intermediate hosts. Methods From April 2017 to September 2018, 153 leeches were collected from several sampling stations in small rivers with slow-flowing waters and related drainage canals located in three regions of Poland. The distinctive forms of tetracotyle metacercariae collected from leeches supplemented with adult Strigeidae specimens sampled from a wide range of water birds were analysed using the 28S rDNA partial gene, the second internal transcribed spacer region (ITS2) region and the cytochrome c oxidase (COI) fragment. Results Among investigated leeches, metacercariae of the tetracotyle type were detected in the parenchyma and musculature of 62 specimens (prevalence 40.5%) with a mean intensity reaching 19.9 individuals. The taxonomic generic affiliation of metacercariae derived from the leeches revealed the occurrence of two strigeid genera: Australapatemon Sudarikov, 1959 and Cotylurus Szidat, 1928. Phylogenetic reconstructions based on the partial 28S rRNA gene, ITS2 region and partial COI gene confirmed the separation of the Australapatemon and Cotylurus clades. Taking currently available molecular data and our results into consideration, recently sequenced tetracotyle of Australapatemon represents most probably Au. minor; however, unclear phylogenetic relationships between Au. burti and Au. minor reduce the reliability of this conclusion. On the other hand, on the basis of the obtained sequences, supplemented with previously published data, the metacercariae of Cotylurus detected in leeches were identified as two species: C. strigeoides Dubois, 1958 and C. syrius Dubois, 1934. This is the first record of C. syrius from the intermediate host. Conclusions The results of this study suggest the separation of ecological niches and life cycles between C. cornutus (Rudolphi, 1808) and C. strigeoides/C. syrius, with potential serious evolutionary consequences for a wide range of host–parasite relationships. Moreover, phylogenetic analyses corroborated the polyphyletic character of C. syrius, the unclear status of C. cornutus and the separate position of Cotylurus raabei Bezubik, 1958 within Cotylurus. The data demonstrate the inconsistent taxonomic status of the sequenced tetracotyle of Australapatemon, resulting, in our opinion, from the limited availability of fully reliable, comparative sequences of related taxa in GenBank.


2015 ◽  
Vol 33 (2) ◽  
pp. 165-173 ◽  
Author(s):  
R.S.O. Lima ◽  
E.C.R. Machado ◽  
A.P.P. Silva ◽  
B.S. Marques ◽  
M.F. Gonçalves ◽  
...  

This work was carried out with the objective of elaborating mathematical models to predict growth and development of purple nutsedge (Cyperus rotundus) based on days or accumulated thermal units (growing degree days). Thus, two independent trials were developed, the first with a decreasing photoperiod (March to July) and the second with an increasing photoperiod (August to November). In each trial, ten assessments of plant growth and development were performed, quantifying total dry matter and the species phenology. After that, phenology was fit to first degree equations, considering individual trials or their grouping. In the same way, the total dry matter was fit to logistic-type models. In all regressions four temporal scales possibilities were assessed for the x axis: accumulated days or growing degree days (GDD) with base temperatures (Tb) of 10, 12 and 15 oC. For both photoperiod conditions, growth and development of purple nutsedge were adequately fit to prediction mathematical models based on accumulated thermal units, highlighting Tb = 12 oC. Considering GDD calculated with Tb = 12 oC, purple nutsedge phenology may be predicted by y = 0.113x, while species growth may be predicted by y = 37.678/(1+(x/509.353)-7.047).


2018 ◽  
Vol 115 (44) ◽  
pp. E10407-E10416 ◽  
Author(s):  
Benjamin H. Good ◽  
Stephen Martis ◽  
Oskar Hallatschek

Microbial communities can evade competitive exclusion by diversifying into distinct ecological niches. This spontaneous diversification often occurs amid a backdrop of directional selection on other microbial traits, where competitive exclusion would normally apply. Yet despite their empirical relevance, little is known about how diversification and directional selection combine to determine the ecological and evolutionary dynamics within a community. To address this gap, we introduce a simple, empirically motivated model of eco-evolutionary feedback based on the competition for substitutable resources. Individuals acquire heritable mutations that alter resource uptake rates, either by shifting metabolic effort between resources or by increasing the overall growth rate. While these constitutively beneficial mutations are trivially favored to invade, we show that the accumulated fitness differences can dramatically influence the ecological structure and evolutionary dynamics that emerge within the community. Competition between ecological diversification and ongoing fitness evolution leads to a state of diversification–selection balance, in which the number of extant ecotypes can be pinned below the maximum capacity of the ecosystem, while the ecotype frequencies and genealogies are constantly in flux. Interestingly, we find that fitness differences generate emergent selection pressures to shift metabolic effort toward resources with lower effective competition, even in saturated ecosystems. We argue that similar dynamical features should emerge in a wide range of models with a mixture of directional and diversifying selection.


1976 ◽  
Vol 56 (4) ◽  
pp. 901-905 ◽  
Author(s):  
D. G. DORRELL

The effect of seeding date on the chlorogenic acid content of sunflower seed flour was determined by seeding the cultivars Krasnodarets and Peredovik at seven dates, starting on 14 May, over 3 yr. Sequential plantings were made at increments of approximately 70 growing degree days (base = 5.6 C). Plants were harvested at normal field maturity. The time and rate of deposition of chlorogenic acid was determined by harvesting plants at 7-day intervals from 21 to 49 days after flowering. The seeds were dehulled and defatted before determining the chlorogenic acid content of the flour. Chlorogenic acid content declined steadily from an average of 4.22% for the first seeding to 3.30% for the last seeding. About one-half of the total chlorogenic acid was present 21 days after flowering. Deposition continued rapidly for the next 14 days then the level began to stabilize. Delay in seeding tended to shorten the period of vegetative growth and shift the deposition of chlorogenic acid to a cooler portion of the growing season. It is suggested that a combination of these factors caused the reduction in chlorogenic acid content of sunflower flour.


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


1971 ◽  
Vol 49 (10) ◽  
pp. 1821-1832 ◽  
Author(s):  
Edward Sucoff

During the 1969 and 1970 growing season buds were collected almost weekly from matched trees in northeastern Minnesota. Cataphyll primordia for the year n + 1 shoot began forming at the time that internodes in the year n shoot started elongating (late April) and continued forming until early September. Primordia for axillary buds started forming about 2 months later and stopped forming at the same time as cataphylls. The size and deposition activity of the apical dome simultaneously increased during the early growing season and decreased during the late season. The maximum rates in July were over nine cataphylls per day.Rate of cataphyll deposition paralleled elongation of the needles on subtending shoots. Forty to fifty percent of the cataphylls had been formed when shoot growth was 95% complete. Although the bulk of the depositions occurred earlier in 1970, when growing degree days were used as the clock, the 2 years were similar.The results provide quantitative data to complement the histologic emphasis of previous studies.


Sign in / Sign up

Export Citation Format

Share Document