scholarly journals Cassava common mosaic virus causes photosynthetic alterations associated with changes in chloroplast ultrastructure and carbohydrate metabolism of cassava plants

2020 ◽  
Author(s):  
Andrea A. Zanini ◽  
Liliana Di Feo ◽  
Dario F. Luna ◽  
Pablo Paccioretti ◽  
Agostina Collavino ◽  
...  

AbstractCassava common mosaic virus (CsCMV) is a potexvirus that causes systemic infections in cassava plants, leading to chlorotic mosaic and producing significant yield losses. To date, the physiological alterations and the mechanism underlying biotic stress during the cassava-CsCMV compatible interaction remains unknown. In this study, we found that CsCMV infection adversely modified chloroplast structure and had functional effects on chloroplasts in source leaves during the course of viral infection. Extrusion of the chloroplast membrane with amoeboid-shaped appearance was observed in infected mesophyll cells. These alterations were associated with lower relative chlorophyll content, and reduced PSII efficiency and CO2 fixation. Moreover, an oxidative stress process was observed in CsCMV-infected plants. Strong declines in the maximum quantum yield of primary photochemistry (Fv/Fm) were observed in infected plants. Furthermore, the analysis of Chlorophyll-a fluorescence (ChlF) evidenced a progressive loss of both oxygen evolving complex activity and “connectivity” within the tripartite system (core antenna-LHCII-Reaction Centre). Other effects of the pathogen included reduction of starch and maltose content in source leaves, and a significant increase of the sucrose/starch ratio, which indicates alteration pattern of carbon. Our results suggest that CsCMV induces chloroplast distortion associated with progressive chloroplast function loss and diversion of carbon flux in source leaf tissue, which should be key in inducing yield losses of infected crops.Main conclusionCsCMV infection adversely modified chloroplast structure and had functional effects on chloroplasts during the course of viral infection, associated with metabolic adjustment in cassava source leaves, which would partly explain cassava root yield losses.

1972 ◽  
Vol 25 (3) ◽  
pp. 517 ◽  
Author(s):  
Cathryn JMittelheuser ◽  
RFM Van Steveninck

The effects on ultrastructure of tris(hydroxymethyl)aminomethane (Tris), pH 8� 0, were examined in leaf segments of wheat, barley, and maize in both light and dark. Tria in the light induces drastic changes in chloroplast ultrastructure which are not apparent in the dark except in mesophyll cells of maize. Both grana and stroma lamellae are affected and structural changes are apparent after treat-mentwith Tris for 3 hr. Vacuoles appear in the chloroplasts and both grana and stroma lamellae frequently Wldergo coiling. At later stages, disruption of the tonoplast occurs. The action of Tris appears to be specific for chloroplast membranes and the tonoplast, there being no apparent effect on the plasmalemma, or the membranes of mitochondria or microbodies.


Author(s):  
R.H.M. Cross ◽  
C.E.J. Botha ◽  
A.K. Cowan ◽  
B.J. Hartley

Senescence is an ordered degenerative process leading to death of individual cells, organs and organisms. The detection of a conditional lethal mutant (achloroplastic) of Hordeum vulgare has enabled us to investigate ultrastructural changes occurring in leaf tissue during foliar senescence.Examination of the tonoplast structure in six and 14 day-old mutant tissue revealed a progressive degeneration and disappearance of the membrane, apparently starting by day six in the vicinity of the mitochondria associated with the degenerating proplastid (Fig. 1.) where neither of the plastid membrane leaflets is evident (arrows, Fig. 1.). At this stage there was evidence that the mitochondrial membranes were undergoing retrogressive changes, coupled with disorganization of cristae (Fig. 2.). Proplastids (P) lack definitive prolamellar bodies. The cytoplasmic matrix is largely agranular, with few endoplasmic reticulum (ER) cisternae or polyribosomal aggregates. Interestingly, large numbers of actively-budding dictysomes, associated with pinocytotic vesicles, were observed in close proximity to the plasmalemma of mesophyll cells (Fig. 3.). By day 14 however, mesophyll cells showed almost complete breakdown of subcellular organelle structure (Fig. 4.), and further evidence for the breakdown of the tonoplast. The final stage of senescence is characterized by the solubilization of the cell wall due to expression and activity of polygalacturonase and/or cellulose. The presence of dictyosomes with associated pinocytotic vesicles formed from the mature face, in close proximity to both the plasmalemma and the cell wall, would appear to support the model proposed by Christopherson for the secretion of cellulase. This pathway of synthesis is typical for secretory glycoproteins.


Author(s):  
Egbert W. Henry

Tobacco mosaic virus (TMV) infection has been studied in several investigations of Nicotiana tabacum leaf tissue. Earlier studies have suggested that TMV infection does not have precise infective selectivity vs. specific types of tissues. Also, such tissue conditions as vein banding, vein clearing, liquification and suberization may result from causes other than direct TMV infection. At the present time, it is thought that the plasmodesmata, ectodesmata and perhaps the plasmodesmata of the basal septum may represent the actual or more precise sites of TMV infection.TMV infection has been implicated in elevated levels of oxidative metabolism; also, TMV infection may have a major role in host resistance vs. concentration levels of phenolic-type enzymes. Therefore, enzymes such as polyphenol oxidase, peroxidase and phenylalamine ammonia-lyase may show an increase in activity in response to TMV infection. It has been reported that TMV infection may cause a decrease in o-dihydric phenols (chlorogenic acid) in some tissues.


1965 ◽  
Vol 25 (3) ◽  
pp. 77-97 ◽  
Author(s):  
L. Kolehmainen ◽  
H. Zech ◽  
D. von Wettstein

The submicroscopic organization of mesophyll cells from tobacco leaves systemically infected with tobacco mosaic virus (TMV) is described. After fixation with glutaraldehyde and osmium tetroxide the arrangement of the TMV particles within the crystalline inclusions is well preserved. Only the ribonucleic acid-containing core of the virus particles is visible in the micrographs. Besides the hexagonal virus crystals, several characteristic types of "inclusion bodies" are definable in the cytoplasm: The so-called fluid crystals seem to correspond to single layers of oriented TMV particles between a network of the endoplasmic reticulum and ribosomes. Unordered groups or well oriented masses of tubes with the diameter of the TMV capsid are found in certain areas of the cytoplasm. A complicated inclusion body is characterized by an extensively branched and folded part of the endoplasmic reticulum, containing in its folds long aggregates of flexible rods. Certain parts of the cytoplasm are filled with large, strongly electron-scattering globules, probably of lipid composition. These various cytoplasmic differentiations and the different forms of presumed virus material are discussed in relation to late stages of TMV reproduction and virus crystal formation.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 402 ◽  
Author(s):  
Chenguang Wang ◽  
Chaonan Wang ◽  
Wenjie Xu ◽  
Jingze Zou ◽  
Yanhong Qiu ◽  
...  

Plants have evolved multiple mechanisms to respond to viral infection. These responses have been studied in detail at the level of host immune response and antiviral RNA silencing (RNAi). However, the possibility of epigenetic reprogramming has not been thoroughly investigated. Here, we identified the role of DNA methylation during viral infection and performed reduced representation bisulfite sequencing (RRBS) on tissues of Cucumber mosaic virus (CMV)-infected Nicotiana tabacum at various developmental stages. Differential methylated regions are enriched with CHH sequence contexts, 80% of which are located on the gene body to regulate gene expression in a temporal style. The methylated genes depressed by methyltransferase inhibition largely overlapped with methylated genes in response to viral invasion. Activation in the argonaute protein and depression in methyl donor synthase revealed the important role of dynamic methylation changes in modulating viral clearance and resistance signaling. Methylation-expression relationships were found to be required for the immune response and cellular components are necessary for the proper defense response to infection and symptom recovery.


1992 ◽  
Vol 47 (1-2) ◽  
pp. 63-68 ◽  
Author(s):  
Rekha Chaturvedi ◽  
M. Singh ◽  
P. V. Sane

Abstract The effect of exposure to strong white light on photosynthetic electron transport reactions of PS I and PS II were investigated in spinach thylakoids in the absence or presence of oxygen. Irrespective of the conditions used for photoinactivation, the damage to PS II was always much more than to PS I. Photoinactivation was severe under anaerobic conditions compared to that in air for the same duration. This shows that the presence of oxygen is required for prevention of photoinactivation of thylakoids. The susceptibility of water-splitting complex in photoinactivation is indicated by our data from experiments with chloride-deficient chloroplast membranes wherein it was observed that the whole chain electron transport from DPC to MV was much less photoinhibited than that from water. The data from the photoinactivation experiments with the Tris-treated thylakoids indicate another photodam age site at or near reaction centre of PS II. DCMU-protected PS II and oxygen-evolving complex from photoinactivation. DCMU protection can also be interpreted in terms of the stability of the PS II complex when it is in S2 state.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Wang ◽  
Tingting An ◽  
Di Huang ◽  
Runjin Liu ◽  
Bingcheng Xu ◽  
...  

Abstract Background Inoculation of arbuscular mycorrhizal (AM) fungi has the potential to alleviate salt stress in host plants through the mitigation of ionic imbalance. However, inoculation effects vary, and the underlying mechanisms remain unclear. Two maize genotypes (JD52, salt-tolerant with large root system, and FSY1, salt-sensitive with small root system) inoculated with or without AM fungus Funneliformis mosseae were grown in pots containing soil amended with 0 or 100 mM NaCl (incrementally added 32 days after sowing, DAS) in a greenhouse. Plants were assessed 59 DAS for plant growth, tissue Na+ and K+ contents, the expression of plant transporter genes responsible for Na+ and/or K+ uptake, translocation or compartmentation, and chloroplast ultrastructure alterations. Results Under 100 mM NaCl, AM plants of both genotypes grew better with denser root systems than non-AM plants. Relative to non-AM plants, the accumulation of Na+ and K+ was decreased in AM plant shoots but increased in AM roots with a decrease in the shoot: root Na+ ratio particularly in FSY1, accompanied by differential regulation of ion transporter genes (i.e., ZmSOS1, ZmHKT1, and ZmNHX). This induced a relatively higher Na+ efflux (recirculating) rate than K+ in AM shoots while the converse outcoming (higher Na+ influx rate than K+) in AM roots. The higher K+: Na+ ratio in AM shoots contributed to the maintenance of structural and functional integrity of chloroplasts in mesophyll cells. Conclusion AM symbiosis improved maize salt tolerance by accelerating Na+ shoot-to-root translocation rate and mediating Na+/K+ distribution between shoots and roots.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010108
Author(s):  
Mengfei Ji ◽  
Jinping Zhao ◽  
Kelei Han ◽  
Weijun Cui ◽  
Xinyang Wu ◽  
...  

Jasmonic acid (JA) is a crucial hormone in plant antiviral immunity. Increasing evidence shows that viruses counter this host immune response by interfering with JA biosynthesis and signaling. However, the mechanism by which viruses affect JA biosynthesis is still largely unexplored. Here, we show that a highly conserved chloroplast protein cpSRP54 was downregulated in Nicotiana benthamiana infected by turnip mosaic virus (TuMV). Its silencing facilitated TuMV infection. Furthermore, cpSRP54 interacted with allene oxide cyclases (AOCs), key JA biosynthesis enzymes, and was responsible for delivering AOCs onto the thylakoid membrane (TM). Interestingly, TuMV P1 protein interacted with cpSRP54 and mediated its degradation via the 26S proteosome and autophagy pathways. The results suggest that TuMV has evolved a strategy, through the inhibition of cpSRP54 and its delivery of AOCs to the TM, to suppress JA biosynthesis and enhance viral infection. Interaction between cpSRP54 and AOCs was shown to be conserved in Arabidopsis and rice, while cpSRP54 also interacted with, and was degraded by, pepper mild mosaic virus (PMMoV) 126 kDa protein and potato virus X (PVX) p25 protein, indicating that suppression of cpSRP54 may be a common mechanism used by viruses to counter the antiviral JA pathway.


2021 ◽  
Author(s):  
Olufemi Alabi

Abstract Introduction: In the past, SCMV and other SCMD-causal viruses have caused serious losses in various maize and sugarcane-growing regions, including Hawaii, Egypt, Natal (South Africa), Argentina, Puerto Rico, Cuba, Australia, USA (Koike and Gillaspie, 1989; Fuchs and Grüntzig, 1995; Chen et al., 2002) and several other countries in South America (Perera et al., 2012 and references therein). Epidemics have been followed by replacement of susceptible noble-type canes by hybrid canes with tolerance or, better still, resistance and the propagation of resistant maize genotypes (Silva-Rosales et al., 2015 and references therein). The evolution of new strains of SCMV has required a continuing breeding programme to prevent heavy losses. Losses caused by SCMV are mainly (1) a reduced yield of the crop, (2) the need to include mosaic resistance when breeding new cultivars, and (3) the slowing of the interchange of cultivars between countries because of quarantine concerns over the introduction of new strains of SCMV. Crop Losses: Crop losses caused by SCMV depend on many factors, including the susceptibility of the cultivars to the prevailing strains of SCMV, the incidence of infection, the prevailing environmental conditions, the stage of growth when infection occurs, and interaction with other agents affecting the crop. Crop losses can vary from negligible to severe. Some documented instances of heavy losses in sugarcane crops due to mosaic outbreaks are as follows. In the 1980s, losses on some farms in the Isis district of Queensland, Australia, were estimated to be about 50% (Jones, 1987). In some commercial plantings of cv. Q95 from an infected source, the infected plants had fewer tillers and were less vigorous than apparently healthy plants nearby (Ryan and Jones, 1986). In Guatemala in 1974-1976, many stunted stools of mosaic-affected cv. Q83 were responsible for lack of uniformity in fields near Santa Lucia. The cane tonnage in these fields was seriously reduced (Fors, 1978). Estimations of Potential Losses in Experiments: Sugarcane In Natal, South Africa, plots of sugarcane cv. NCo376 (highly susceptible) and N12 (moderately resistant) were established with either infected or healthy cane. The plots were harvested regularly and tested serologically for SCMV to the 6th ratoon. There was a decline in the number of shoots showing mosaic symptoms in both cultivars during the experiment. However, mean yield reductions were 22% for infected NCo376 and 16% for N12 compared with yields of initially healthy cane (Cronje et al., 1994). In Brazil, plots in two locations were planted with 0, 25, 50 and 100% initial SCMV infection. Virus spread was noticeable for cv. CB46/47, but negligible for cv. IAC50/134. For CB46/47 yield losses between initially healthy and 25% infected plots were 27% and 19% in the two locations; with 100% infection, yield reduction was 71% in both areas. For IAC50/134 the only significant difference in yield was between 0 and 100% infection, an 18% reduction in diseased plots in both areas (Matsuoka and Costa, 1974). In Java, Indonesia, field trials with 0 and 100% SCMV-infected seed cane gave sugar yield reductions of 9.3% for POJ3016 and 11.1% for POJ3067 associated with the disease (Kuntohartono and Legowo, 1970). In Spain, when healthy sugarcane was planted between rows infected by SCMV, the cultivars CO62/175 and NA56/79 were sufficiently resistant for commercial production, but losses of 0.4-0.5 t/ha were found for every 1% infection between the 2nd and 4th cutting (Olalla Mercade et al., 1984a). In Pakistan, mosaic-free seed cane gave a significantly higher yield of cane (48.5 t/ha) than mosaic-infected seed cane (44.5 t/ha) (Ahmad et al., 1991). Maize In East Africa, 10 susceptible maize hybrids had yield losses of 18-46% when inoculated with SCMV in the seedling stage (Louie and Darrah, 1980). In Germany, SCMV was more prevalent than MDMV, but had a similar effect on growth and yield of maize. Early infection reduced plant height by 25%, total weight by 38% and ear weight by 27% (Fuchs et al., 1990). Disease Complexes: SCMV and related potyviruses may occur in disease complexes with other plant pathogens; either additive or synergistic effects may occur. In Louisiana, USA, losses in sugarcane caused by Sorghum mosaic virus (formerly called SCMV-H) and ratoon stunting disease (RSD, caused by the bacterium Leifsonia xyli subsp. xyli) were additive in cv. CP67-412, but synergistic (greater than the sum of each disease separately) in CP65-357 (Koike, 1982). In Spain, RSD symptoms were associated with the presence of SCMV, and damage by RSD was greatest in fields with clear mosaic symptoms (Olalla Mercade et al., 1984b). In Thailand, inoculation of the downy mildew-susceptible maize cv. Guatemala with an SCMV-like virus increased susceptibility to Peronosclerospora sorghi only slightly, whereas with the resistant Suwan 1 maize cv., the virus increased susceptibility from 27 to 61% (Sutabutra et al., 1976). In many African (especial East African) countries, SCMV and some of the SCMD-causal viruses may also interact synergistically with Maize chlorotic mottle virus (genus Machlomovirus; family Tombusviridae) to cause maize lethal necrosis disease, an emerging debilitating disease of maize (Niblett and Claflin, 1978; Wangai et al., 2012) that can cause total crop loss.


Sign in / Sign up

Export Citation Format

Share Document