scholarly journals Synchronizing vigilance or taking turns as sentinels? The importance of testing coordination

2020 ◽  
Author(s):  
Annemarie van der Marel ◽  
Jane M. Waterman ◽  
Marta López-Darias

AbstractDiurnal species can reduce the cost of the trade-off between feeding and predation risk by 1) performing low-quality (vigilance while performing another behavior) instead of high-quality vigilance (only performing vigilance) or 2) by vigilance coordination either by taking turns acting as sentinels or by synchronizing vigilance bouts. A sentinel system assumes that sentinels are located at raised positions, alarm signal, and alternate vigilance bouts. However, many species with a described sentinel system have not been tested yet for coordination. We set out to study coordinated behavior and the reasons for this behavior in the invasive Barbary ground squirrel, Atlantoxerus getulus, using behavioral observations and genetic analyses. This species performs a type of vigilance (‘perch behavior’) seemingly similar to sentinel behavior as individuals performed high-quality vigilance at raised locations for over 30 s, but alternating coordination is unknown. Perch behavior was coordinated but synchronized instead of taking turns (sentinel). Both sexes performed perch behavior and individuals performed perch behavior in the absence and presence of kin and offspring. We found that survival or time spent foraging did not decrease for perched individuals, nor that individual survival increased. Perch behavior in the invasive population of A. getulus may be synchronized 1) to perform an optimal activity when satiated (low costs), and, 2) may be an adaptation to habitat structure (large benefits). Our study demonstrates that the cost of the vigilance/foraging trade-off may not be high for invasive species and argued the importance of testing for coordination in species with described sentinel systems.

Author(s):  
Rolf N. Van Lieshout

Periodic timetabling is one of the most well-researched problems in the public transport optimization literature. However, the impact that timetabling has on the number of required vehicles, which directly translates to operator costs, is rarely considered. Therefore, in this paper, we consider the problem of jointly optimizing the timetable and the vehicle circulation schedule, which specifies the cyclic sequences of trips that vehicles perform. In order to obtain high-quality solutions to realistic instances, we improve an earlier proposed formulation by contraction techniques, three new valid inequalities, and symmetry-breaking constraints. Ultimately, this allows us to explore the trade-off between the number of vehicles and the attractiveness of the timetable from the passengers’ perspective. An extensive computational study demonstrates the effectiveness of the improved formulation. Moreover, using this approach, we are able to find timetables requiring substantially fewer vehicles at the cost of minimal increases of the average travel time of passengers.


2011 ◽  
Vol 148-149 ◽  
pp. 1227-1230
Author(s):  
Zhong Min Li ◽  
Zhi Li ◽  
Jun Guo

The combined heat and power plant furnish heat and electric, which are two different quality energy. And benefit returns to electric, benefit returns to heat and their trade off compose three methods to share the cost of the combined heat and power plant. Theory of energy grade is the thermodynamic viewpoint, which is not only considering the energy conservation, but also the energy matching. It takes into account all the quality and quantity of the utilized energy. In the present article, theory of energy grade is applied to analyze the heat usage of heat consumer. That takes the price of electric as basis. This method simplifies the calculation, has the reasonable theory foundation and meets the practice condition. It also reflects the idea of using energy according to the quality and high quality, high price


2020 ◽  
Vol 2020 (14) ◽  
pp. 378-1-378-7
Author(s):  
Tyler Nuanes ◽  
Matt Elsey ◽  
Radek Grzeszczuk ◽  
John Paul Shen

We present a high-quality sky segmentation model for depth refinement and investigate residual architecture performance to inform optimally shrinking the network. We describe a model that runs in near real-time on mobile device, present a new, highquality dataset, and detail a unique weighing to trade off false positives and false negatives in binary classifiers. We show how the optimizations improve bokeh rendering by correcting stereo depth misprediction in sky regions. We detail techniques used to preserve edges, reject false positives, and ensure generalization to the diversity of sky scenes. Finally, we present a compact model and compare performance of four popular residual architectures (ShuffleNet, MobileNetV2, Resnet-101, and Resnet-34-like) at constant computational cost.


2020 ◽  
Vol 4 (02) ◽  
pp. 34-45
Author(s):  
Naufal Dzikri Afifi ◽  
Ika Arum Puspita ◽  
Mohammad Deni Akbar

Shift to The Front II Komplek Sukamukti Banjaran Project is one of the projects implemented by one of the companies engaged in telecommunications. In its implementation, each project including Shift to The Front II Komplek Sukamukti Banjaran has a time limit specified in the contract. Project scheduling is an important role in predicting both the cost and time in a project. Every project should be able to complete the project before or just in the time specified in the contract. Delay in a project can be anticipated by accelerating the duration of completion by using the crashing method with the application of linear programming. Linear programming will help iteration in the calculation of crashing because if linear programming not used, iteration will be repeated. The objective function in this scheduling is to minimize the cost. This study aims to find a trade-off between the costs and the minimum time expected to complete this project. The acceleration of the duration of this study was carried out using the addition of 4 hours of overtime work, 3 hours of overtime work, 2 hours of overtime work, and 1 hour of overtime work. The normal time for this project is 35 days with a service fee of Rp. 52,335,690. From the results of the crashing analysis, the alternative chosen is to add 1 hour of overtime to 34 days with a total service cost of Rp. 52,375,492. This acceleration will affect the entire project because there are 33 different locations worked on Shift to The Front II and if all these locations can be accelerated then the duration of completion of the entire project will be effective


2020 ◽  
Vol 38 (9A) ◽  
pp. 1396-1405
Author(s):  
Arwa F. Tawfeeq ◽  
Matthew R. Barnett

The development in the manufacturing of micro-truss structures has demonstrated the effectiveness of brazing for assembling these sandwiches, which opens new opportunities for cost-effective and high-quality truss manufacturing. An evolving idea in micro-truss manufacturing is the possibility of forming these structures in different shapes with the aid of elevated temperature. This work investigates the formability and elongation of aluminum alloy sheets typically used for micro-truss manufacturing, namely AA5083 and AA3003. Tensile tests were performed at a temperature in the range of 25-500 ○C and strain rate in the range of 2x10-4 -10-2 s-1. The results showed that the clad layer in AA3003 exhibited an insignificant effect on the formability and elongation of AA3003. The formability of the two alloys was improved significantly with values of m as high as 0.4 and 0.13 for AA5083 and AA3003 at 500 °C. While the elongation of both AA5083 and AA3003 was improved at a higher temperature, the elongation of AA5083 was inversely related to strain rate. It was concluded that the higher the temperature is the better the formability and elongation of the two alloys but at the expense of work hardening. This suggests a trade-off situation between formability and strength. 


2020 ◽  
Vol 12 (7) ◽  
pp. 2767 ◽  
Author(s):  
Víctor Yepes ◽  
José V. Martí ◽  
José García

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-25
Author(s):  
Elham Shamsa ◽  
Alma Pröbstl ◽  
Nima TaheriNejad ◽  
Anil Kanduri ◽  
Samarjit Chakraborty ◽  
...  

Smartphone users require high Battery Cycle Life (BCL) and high Quality of Experience (QoE) during their usage. These two objectives can be conflicting based on the user preference at run-time. Finding the best trade-off between QoE and BCL requires an intelligent resource management approach that considers and learns user preference at run-time. Current approaches focus on one of these two objectives and neglect the other, limiting their efficiency in meeting users’ needs. In this article, we present UBAR, User- and Battery-aware Resource management, which considers dynamic workload, user preference, and user plug-in/out pattern at run-time to provide a suitable trade-off between BCL and QoE. UBAR personalizes this trade-off by learning the user’s habits and using that to satisfy QoE, while considering battery temperature and State of Charge (SOC) pattern to maximize BCL. The evaluation results show that UBAR achieves 10% to 40% improvement compared to the existing state-of-the-art approaches.


Author(s):  
Vincent E. Castillo ◽  
John E. Bell ◽  
Diane A. Mollenkopf ◽  
Theodore P. Stank

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeonghyuk Park ◽  
Yul Ri Chung ◽  
Seo Taek Kong ◽  
Yeong Won Kim ◽  
Hyunho Park ◽  
...  

AbstractThere have been substantial efforts in using deep learning (DL) to diagnose cancer from digital images of pathology slides. Existing algorithms typically operate by training deep neural networks either specialized in specific cohorts or an aggregate of all cohorts when there are only a few images available for the target cohort. A trade-off between decreasing the number of models and their cancer detection performance was evident in our experiments with The Cancer Genomic Atlas dataset, with the former approach achieving higher performance at the cost of having to acquire large datasets from the cohort of interest. Constructing annotated datasets for individual cohorts is extremely time-consuming, with the acquisition cost of such datasets growing linearly with the number of cohorts. Another issue associated with developing cohort-specific models is the difficulty of maintenance: all cohort-specific models may need to be adjusted when a new DL algorithm is to be used, where training even a single model may require a non-negligible amount of computation, or when more data is added to some cohorts. In resolving the sub-optimal behavior of a universal cancer detection model trained on an aggregate of cohorts, we investigated how cohorts can be grouped to augment a dataset without increasing the number of models linearly with the number of cohorts. This study introduces several metrics which measure the morphological similarities between cohort pairs and demonstrates how the metrics can be used to control the trade-off between performance and the number of models.


2020 ◽  
Vol 15 (1) ◽  
pp. 4-17
Author(s):  
Jean-François Biasse ◽  
Xavier Bonnetain ◽  
Benjamin Pring ◽  
André Schrottenloher ◽  
William Youmans

AbstractWe propose a heuristic algorithm to solve the underlying hard problem of the CSIDH cryptosystem (and other isogeny-based cryptosystems using elliptic curves with endomorphism ring isomorphic to an imaginary quadratic order 𝒪). Let Δ = Disc(𝒪) (in CSIDH, Δ = −4p for p the security parameter). Let 0 < α < 1/2, our algorithm requires:A classical circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{1-\alpha}\right)}.$A quantum circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{\alpha}\right)}.$Polynomial classical and quantum memory.Essentially, we propose to reduce the size of the quantum circuit below the state-of-the-art complexity $2^{\tilde{O}\left(\log(|\Delta|)^{1/2}\right)}$ at the cost of increasing the classical circuit-size required. The required classical circuit remains subexponential, which is a superpolynomial improvement over the classical state-of-the-art exponential solutions to these problems. Our method requires polynomial memory, both classical and quantum.


Sign in / Sign up

Export Citation Format

Share Document