scholarly journals Promoter activity-based case-control association study on SLC6A4 highlighting hypermethylation and altered amygdala volume in male patients with schizophrenia

2020 ◽  
Author(s):  
Tempei Ikegame ◽  
Miki Bundo ◽  
Naohiro Okada ◽  
Yui Murata ◽  
Shinsuke Koike ◽  
...  

AbstractAssociations between altered DNA methylation of the serotonin transporter (5-HTT)-encoding gene SLC6A4 and early life adversity, mood and anxiety disorders, and amygdala reactivity have been reported. However, few studies have examined epigenetic alterations of SLC6A4 in schizophrenia (SZ). We examined CpG sites of SLC6A4, whose DNA methylation levels have been reported to be altered in bipolar disorder, using three independent cohorts of patients with SZ and age-matched controls. We found significant hypermethylation of a CpG site in SLC6A4 in male patients with SZ in all three cohorts. We showed that chronic administration of risperidone did not affect the DNA methylation status at this CpG site using common marmosets, and that in vitro DNA methylation at this CpG site diminished the promoter activity of SLC6A4. We then genotyped the 5-HTT-linked polymorphic region (5-HTTLPR) and investigated the relationship among 5-HTTLPR, DNA methylation, and amygdala volume using brain imaging data. We found that patients harboring low-activity 5-HTTLPR alleles showed hypermethylation and they showed a negative correlation between DNA methylation levels and left amygdala volumes. These results suggest that hypermethylation of the CpG site in SLC6A4 is involved in the pathophysiology of SZ, especially in male patients harboring low-activity 5-HTTLPR alleles.

2020 ◽  
Vol 46 (6) ◽  
pp. 1577-1586
Author(s):  
Tempei Ikegame ◽  
Miki Bundo ◽  
Naohiro Okada ◽  
Yui Murata ◽  
Shinsuke Koike ◽  
...  

Abstract Associations between altered DNA methylation of the serotonin transporter (5-HTT)-encoding gene SLC6A4 and early life adversity, mood and anxiety disorders, and amygdala reactivity have been reported. However, few studies have examined epigenetic alterations of SLC6A4 in schizophrenia (SZ). We examined CpG sites of SLC6A4, whose DNA methylation levels have been reported to be altered in bipolar disorder, using 3 independent cohorts of patients with SZ and age-matched controls. We found significant hypermethylation of a CpG site in SLC6A4 in male patients with SZ in all 3 cohorts. We showed that chronic administration of risperidone did not affect the DNA methylation status at this CpG site using common marmosets, and that in vitro DNA methylation at this CpG site diminished the promoter activity of SLC6A4. We then genotyped the 5-HTT-linked polymorphic region (5-HTTLPR) and investigated the relationship among 5-HTTLPR, DNA methylation, and amygdala volume using brain imaging data. We found that patients harboring low-activity 5-HTTLPR alleles showed hypermethylation and they showed a negative correlation between DNA methylation levels and left amygdala volumes. These results suggest that hypermethylation of the CpG site in SLC6A4 is involved in the pathophysiology of SZ, especially in male patients harboring low-activity 5-HTTLPR alleles.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5599-5609 ◽  
Author(s):  
Erling A. Hoivik ◽  
Linda Aumo ◽  
Reidun Aesoy ◽  
Haldis Lillefosse ◽  
Aurélia E. Lewis ◽  
...  

Steroidogenic factor 1 (SF1) is expressed in a time- and cell-specific manner in the endocrine system. In this study we present evidence to support that methylation of CpG sites located in the proximal promoter of the gene encoding SF1 contributes to the restricted expression pattern of this nuclear receptor. DNA methylation analyses revealed a nearly perfect correlation between the methylation status of the proximal promoter and protein expression, such that it was hypomethylated in cells that express SF1 but hypermethylated in nonexpressing cells. Moreover, in vitro methylation of this region completely repressed reporter gene activity in transfected steroidogenic cells. Bisulfite sequencing of DNA from embryonic tissue demonstrated that the proximal promoter was unmethylated in the developing testis and ovary, whereas it was hypermethylated in tissues that do not express SF1. Together these results indicate that the DNA methylation pattern is established early in the embryo and stably inherited thereafter throughout development to confine SF1 expression to the appropriate tissues. Chromatin immunoprecipitation analyses revealed that the transcriptional activator upstream stimulatory factor 2 and RNA polymerase II were specifically recruited to this DNA region in cells in which the proximal promoter is hypomethylated, providing functional support for the fact that lack of methylation corresponds to a transcriptionally active gene. In conclusion, we identified a region within the SF1/Sf1 gene that epigenetically directs cell-specific expression of SF1.


1996 ◽  
Vol 45 (1-2) ◽  
pp. 243-244
Author(s):  
P.A. Koetsier ◽  
W. Doerfler

In previous work from this laboratory, an inverse dependence was established for the adenovirus type 2 E2A late promoter between sequence-specific DNA methylation and promoter activity [1-5; for reviews see ref. 6, 7]. The effect of DNA methylation on promoter activity was also assessed in the transgenic mice, which were obtained from microinjections of unmethylated or in vitro HpaII-premethylated pAd2E2AL-CAT DNA [1] into F2 zygotes from B6D2F, (C57BL/6 × DBA/2) hybrid mice. In CAT assays carried out on organ extracts from the pAd2E2AL-CAT mice, the inverse relationship was confirmed [2].We studied the stability of the pAd2E2AL-CAT DNA methylation patterns in up to eight mouse generations and assessed the influence of the strain-specific genetic background. Three pAd2E2AL-CAT mouse lines were crossed with inbred DBA/2, C57BL/6 or B6D2F, mice. Parent-of-origin effects were controlled by exclusive hemizygous transgene transmission either via females or males. The founder animal of line 7-1 carried two groups of transgenes (A and B) on separate chromosomes. The transgene methylation patterns of the 7-1B transgenes and those of the lines 5-8 and 8-1 were stably transmitted.Southern blot hybridization experiments [8, 9] revealed that the 7-1A transgene methylation pattern was a cellular mosaic. In mixed-genetic-background offspring from 7-1A animals, 10% carried transgenes with HpaII-DNA methylation levels that were reduced from 40 to 10-15%. This finding suggested that in this background the factors that supported high methylation levels were dominant. When inbred DBA/2 mice were the mates, 40% of the siblings carried demethylated transgenes, whereas this ratio amounted to only 10% in C57BL/6 offspring (comparable to B6D2F1 crossings). Transgene methylation patterns were not detectably influenced by the parent-of-origin.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5220-5220
Author(s):  
Pavel Burda ◽  
Jarmila Vargova ◽  
Nikola Curik ◽  
John Strouboulis ◽  
Giorgio Lucio Papadopoulos ◽  
...  

Abstract Introduction: GATA-1 and PU.1 are two important hematopoietic transcription factors that mutually inhibit each other in progenitor cells to guide entrance into the erythroid or myeloid lineage, respectively. Expression of PU.1 is controlled by several transcription factors including PU.1 itself by binding to the distal URE enhancer (upstream regulatory element) whose deletion leads to acute myeloid leukemia (AML) (Rosenbauer F et al. 2004). Co-expression of PU.1 and GATA-1 in AML-erythroleukemia (EL) blasts prevents efficient differentiation regulated by these transcription factors. Inhibition of transcriptional activity of PU.1 protein by GATA-1 has been reported (Nerlov C et al. 2000), however it is not known whether GATA-1 can inhibit PU.1 gene in human early erythroblasts directly. We have recently found that MDS/AML erythroblasts display repressive histone modifications and DNA methylation status of PU.1 gene that respond to 5-azacitidine (AZA) leading to inhibited blast cell proliferation and stimulated myeloid differentiation (Curik N et al. 2012). We hypothesize that l eukemia blockade during early erythroid differentiation includes direct GATA-1-mediated inhibition of the PU.1 gene. Results: We herein document the GATA-1 mediated repression of the PU.1 gene in human EL cell lines (OCI-M2 and K562) together with the recruitment of DNA methyl transferase I (DNMT1) to the URE known to guide most of the PU.1 gene transcription. Repression of the PU.1 gene involves both DNA methylation at the URE and methylation/deacetylation of the histone H3 lysine-K9 residue and methylation of H3K27 at additional DNA elements and the PU.1 promoter. Inhibition of GATA-1 by siRNA as well as the AZA treatment in AML-EL led to the significant DNA-demethylation of the URE thorough the mechanism of DNMT1 depletion leading to upregulation of the PU.1 expression. Conclusions: Our data indicate that GATA-1 binds to the PU.1 gene at the URE and initiate events leading to the PU.1 gene repression in human ELs. The mechanism includes repressive epigenetic remodeling of the URE that is important for the PU.1 downregulation and leukemogenesis and that is also simultaneously sensitive to the DNA demethylation treatment with AZA. The GATA-1-mediated inhibition likely contributes to the PU.1 downregulation during progenitor cell differentiation that could be employed during leukemogenesis. Importantly, we also observed important differences between murine and human ELs and found that repression of the PU.1 gene in human ELs can become reverted by the epigenetic therapy with AZA. Our work also suggests that hypomethylating therapy using DNA methylation inhibitors in MDS/AML may become potentially effective in MDS/EL patients. We think that during early erythroid differentiation the GATA-1 binds and represses the PU.1 gene, however this is not fully completed in EL and therefore the erythroid as well as myeloid differentiation are blocked. Grants: GACR P305/12/1033, UNCE 204021, PRVOUK-P24/LF1/1. Disclosures Off Label Use: Azacitidine, DNA demethylation agens tested in vitro in AML/MDS treatment. Stopka:Celgene: Research Funding.


2019 ◽  
Vol 30 ◽  
pp. vi86
Author(s):  
Kota Ouchi ◽  
Shin Takahashi ◽  
Akira Okita ◽  
Yasuhiro Sakamoto ◽  
Osamu Muto ◽  
...  

2016 ◽  
Vol 28 (2) ◽  
pp. 213
Author(s):  
T. D. Araujo ◽  
J. Jasmin ◽  
C. C. R. Quintao ◽  
E. D. Souza ◽  
J. H. M. Viana ◽  
...  

The cell response to stress involves epigenetic modifications in order to regulate the gene expression, which is dependent of chromatin structure and DNA methylation status. On the other hand, changes on DNA methylation can have an effect on chromatin organisation (Espada and Esteller 2010 Semin. Cell. Dev. Biol. 21, 238–246). In this study we evaluated the effect of 5-aza-2′-deoxycytidine (5-aza; Sigma, St. Louis, MO, USA), a DNA methylation inhibitor, on heterochromatin 1 β formation of bovine pre-implantation embryos derived from oocytes that did or did not undergo heat shock during in vitro maturation (IVM). Oocytes were IVM under 38.5°C for 24 h (non-heat-shock: NHS group) or under 41.5°C for 12 h followed by 38.5°C for 12 h (heat-shock: HS group). Oocytes were IVF for 20 h and the denuded presumptive zygotes from NHS or HS groups were cultured with 0 (nontreated controls) or 10 nM of 5-aza for 24 h or 48 h in CR2aa plus 2.5% FCS at 38.5°C with 5% CO2, 5% O2 and 90% N2. Embryos with 4–7 cells at 44 h post-insemination (hpi) and embryos with 8–16 cells at 68 hpi were fixed in 4% paraformaldehyde and stained with anti-mouse HP1β first antibody, then immunofluorescence was evaluated by confocal microscopy (Leica TCS SP5II) and images were processed by ImageJ 1.49 (NIH, Bethesda, MD, USA). Fluorescence of nuclei and of background area (fluorescence/unit area) were measured and then the corrected relative fluorescence per nucleus was calculated. We analysed 129 and 149 nuclei at 44 hpi from 29 and 34 embryos as well as 268 and 182 nuclei at 68 hpi from 37 and 22 embryos of the NHS and HS groups, respectively, obtained from 3 replicates. Data underwent log-transformation and was analysed by ANOVA, and means compared by Student-Newman-Keuls. Embryos with 8–16 cells derived from NHS oocytes and treated with 5-aza for 24 h or for 48 h had nuclei with lower HP1 fluorescence than their respective NHS (nontreated) control (P < 0.01). In contrast, 8–16-cells embryos derived from HS and treated with 5-aza displayed nuclei with the same HP1 fluorescence of their respective HS control (P > 0.05). When embryos derived from HS and NHS (nontreated) control groups were compared, higher HP1 fluorescence was found in those with 4–7 cells of HS group (P < 0.05); however, embryos with 8–16 cells displayed similar HP1 fluorescence between both NHS and HS control groups (P > 0.05). There was no difference on HP1 fluorescence between nuclei of embryos with 4–7 cells treated with 5-aza for 24 h and control (nontreated) in both HS and NHS groups. These data suggest that embryos derived from heat-shocked oocytes can accumulate more heterochromatin at earlier stages than those from non-heat-shocked oocytes and that the effect of DNA methylation inhibition by 5-aza on embryo heterochromatin can vary accordingly to the exposure of the oocyte to heat shock during in vitro maturation. Financial support from CNPq, Fapemig, and CAPES is acknowledged.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 389-389
Author(s):  
Beau Webber ◽  
Michelina Iacovino ◽  
Michael Kyba ◽  
Bruce R. Blazar ◽  
Jakub Tolar

Abstract Abstract 389 Introduction: The Runt-related transcription factor Runx1 (AML1) is a central regulator of mammalian hematopoiesis and is required for the generation of hematopoietic stem cells (HSC) from hemogenic endothelium in the embryo. It has been shown that Runx1 is alternatively expressed from two promoters in a temporal fashion, and that their differential activities are influenced by a conserved intronic enhancer (+23) element. Intriguingly, promoter usage follows a pattern whereby the proximal (P2) initiates early in primitive hematopoiesis, while the distal (P1) becomes active later at the time of HSC emergence and is the predominant isoform expressed in fetal liver and adult HSC. While some transcription factor binding sites and cis-regulatory elements have been identified, an explanation for the alternative promoter usage remains elusive. We hypothesized that this regulation may be at the level of chromatin accessibility, and therefore investigated the DNA methylation status of Runx1 cis-elements. Methods/Results: We analyzed bisulfite-treated genomic DNA from E14.5 fibroblast (MEF), E8.5 yolk sac CD41+ (YS), E14.5 fetal liver Lin-Sca-1+CD48-CD150+ (FL), and adult marrow Lin-cKit+Sca-1+ (KLS); representing non-hematopoietic, primitive hematopoietic, and two stages of definitive HSC respectively. In addition, we also examined methylation in hematopoietic populations derived in vitro from murine embryonic stem cells (mESC). Initial exploratory analysis focused on classically defined CpG islands upstream of each promoter, however no significant differential methylation was observed within these regions. Subsequent analysis focused on CpGs near the transcription start site (TSS) and within the +23 enhancer. The P2 promoter was uninformative as it was unmethylated in all populations analyzed, whereas methylation within the +23 enhancer differentiated between hematopoietic and non-hematopoietic cell populations. At the P1 promoter, methylation status was remarkably correlated with primitive vs. definitive status. P1 was highly methylated in MEFs (77%), mESC embryoid body (EB) derived cKit+CD41+ (66%), and E8.5 YS CD41+ (58%); but significantly less methylated in vivo in FL HSC (8.1%) and adult KLS cells (18%). We are currently using this correlation of demethylation and definitive HSC potential to identify conditions that may drive definitive HSC generation from mESC-derived blood progenitors. Since overexpression of HoxB4 coupled with OP9 co-culture is the only confirmed method capable of producing definitive HSC from mESC, and HoxB4 has been shown to bind within the P1 promoter region of Runx1, we cultured HoxB4 or control EB-derived hematopoietic progenitors on OP9 stroma. We observed progressive demethylation in the HoxB4 arm: after 6 days of co-culture 47% vs. 71% in controls, and after 11 days 27% in the HoxB4 arm while the control population failed to proliferate past day 6. Isoform specific RT-PCR confirmed that HoxB4 overexpression resulted in Runx1 expression from the P1 promoter whereas the control vector did not. Within P1, we identify a single CpG that is most highly correlated with definitive HSC potential in vivo, and most significantly demethylated upon HoxB4 overexpression in vitro. Conclusions: These data indicate that differential methylation occurs at Runx1 regulatory regions during hematopoietic development in vitro and in vivo. The +23 enhancer is demethylated in cells with hematopoietic potential, whereas demethylation of the Runx1 P1 promoter is highly correlated with definitive HSPC populations and is promoted in vitro by HoxB4. These data are the first to identify a role for DNA methylation in the regulation of alternative promoter usage at the Runx1 locus, and may serve as a novel biomarker of HSC potential during embryonic development. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 82 (4) ◽  
pp. 1657-1665 ◽  
Author(s):  
Li Xiao ◽  
Donna M. Crabb ◽  
Yuling Dai ◽  
Yuying Chen ◽  
Ken B. Waites ◽  
...  

ABSTRACTUreaplasmaspecies commonly colonize the adult urogenital tract and are implicated in invasive diseases of adults and neonates. Factors that permit the organisms to cause chronic colonization or infection are poorly understood. We sought to investigate whether host innate immune responses, specifically, antimicrobial peptides (AMPs), are involved in determining the outcome ofUreaplasmainfections. THP-1 cells, a human monocytoid tumor line, were cocultured withUreaplasma parvumandU. urealyticum. Gene expression levels of a variety of host defense genes were quantified by real-time PCR.In vitroantimicrobial activities of synthetic AMPs againstUreaplasmaspp. were determined using a flow cytometry-based assay. Chromosomal histone modifications in host defense gene promoters were tested by chromatin immunoprecipitation (ChIP). DNA methylation status in the AMP promoter regions was also investigated. After stimulation withU. parvumandU. urealyticum, the expression of cell defense genes, including the AMP genes (DEFB1,DEFA5,DEFA6, andCAMP), was significantly downregulated compared to that ofTNFAandIL-8, which were upregulated.In vitroflow cytometry-based antimicrobial assay revealed that synthetic peptides LL-37, hBD-3, and hBD-1 had activity againstUreaplasmaspp. Downregulation of the AMP genes was associated with chromatin modification alterations, including the significantly decreased histone H3K9 acetylation withU. parvuminfection. No DNA methylation status changes were detected uponUreaplasmainfection. In conclusion, AMPs havein vitroactivity againstUreaplasmaspp., and suppression of AMP expression might be important for the organisms to avoid this aspect of the host innate immune response and to establish chronic infection and colonization.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 263 ◽  
Author(s):  
Elisa Cerruti ◽  
Cinzia Comino ◽  
Alberto Acquadro ◽  
Gianpiero Marconi ◽  
Anna Maria Repetto ◽  
...  

Globe artichoke represents one of the main horticultural species of the Mediterranean basin, and ‘Spinoso sardo’ is the most widespread and economically relevant varietal type in Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type ‘Spinoso sardo’ plants. This phenomenon cannot be foreseen and is reversible through generations, suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked to photosynthesis, regulation of flower development, and regulation of reproductive processes, coherently with the observed phenotype. Differences in the methylation status of some candidate genes were integrated with transcriptional analysis to test whether these two regulation levels might interplay in the emergence and spread of the ‘Spinoso sardo’ non-conventional phenotype.


Reproduction ◽  
2012 ◽  
Vol 144 (3) ◽  
pp. 319-330 ◽  
Author(s):  
Mike Diederich ◽  
Tamara Hansmann ◽  
Julia Heinzmann ◽  
Brigitte Barg-Kues ◽  
Doris Herrmann ◽  
...  

The developmental capacity of oocytes from prepubertal cattle is reduced compared with their adult counterparts, and epigenetic mechanisms are thought to be involved herein. Here, we analyzed DNA methylation in three developmentally important, nonimprinted genes (SLC2A1, PRDX1, ZAR1) and two satellite sequences, i.e. ‘bovine testis satellite I’ (BTS) and ‘Bos taurus alpha satellite I’ (BTαS). In parallel, mRNA expression of the genes was determined by quantitative real-time PCR. Oocytes were retrieved from prepubertal calves and adult cows twice per week over a 3-week period by ultrasound-guided follicular aspiration after treatment with FSH and/or IGF1. Both immature and in vitro matured prepubertal and adult oocytes showed a distinct hypomethylation profile of the three genes without differences between the two types of donors. The methylation status of the BTS sequence changed according to the age and treatment while the methylation status of BTαS sequence remained largely unchanged across the different age and treatment groups. Relative transcript abundance of the selected genes was significantly different in immature and in vitro matured oocytes; only minor changes related to origin and treatment were observed. In conclusion, methylation levels of the investigated satellite sequences were high (>50%) in all groups and showed significant variation depending on the age, treatment, or in vitro maturation. To what extent this is involved in the acquisition of developmental competence of bovine oocytes needs further study.


Sign in / Sign up

Export Citation Format

Share Document