scholarly journals Back to feedback: aberrant sensorimotor control in music performance under pressure

2020 ◽  
Author(s):  
Shinichi Furuya ◽  
Reiko Ishimaru ◽  
Takanori Oku ◽  
Noriko Nagata

ABSTRACTPrecisely timed production of dexterous actions is often destabilized in anxiogenic situations. Previous studies demonstrated that cognitive functions such as attention and working memory as well as autonomic nervous functions are susceptible to induced anxiety in skillful performance while playing sports or musical instruments. However, it is not known whether the degradation of motor functions, sensory perception, or sensorimotor control underlies such a compromise of skillful performance due to psychophysiological distress. Here, we addressed this issue through a series of behavioral experiments, which provided no evidence supporting for detrimental effects of the stress on the perceptual accuracy and precision of the finger movements in pianists. By contrast, after transiently delaying the timing of tone production while playing the piano, the local tempo was abnormally disrupted only under pressure. The results suggest that psychological stress degraded the temporal stability of movement control due to an abnormal increase in sensory feedback gain but not temporal perception or motor precision. A learning experiment further demonstrated that the temporal instability of auditory-motor control under pressure was alleviated after practicing piano while ignoring delayed auditory feedback but not after practicing while compensating for the delayed feedback. Together, these findings suggest an abnormal transition from feedforward to feedback control in expert piano performance in anxiogenic situations, which can be mitigated through specialized sensorimotor training that involves piano practice while volitionally ignoring the artificially delayed provision of auditory feedback.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shinichi Furuya ◽  
Reiko Ishimaru ◽  
Takanori Oku ◽  
Noriko Nagata

AbstractPrecisely timed production of dexterous actions is often destabilized in anxiogenic situations. Previous studies demonstrated that cognitive functions such as attention and working memory as well as autonomic nervous functions are susceptible to psychological stress in skillful performance while playing sports or musical instruments. However, it is not known whether the degradation of sensorimotor functions underlies such a compromise of skillful performance due to psychophysiological distress. Here, we addressed this issue through a set of behavioral experiments. After artificially delaying the timing of tone production while playing the piano, the local tempo was abnormally disrupted only under pressure. The results suggest that psychological stress degraded the temporal stability of movement control due to an abnormal increase in feedback gain. A learning experiment further demonstrated that the temporal instability of auditory-motor control under pressure was alleviated after practicing piano while ignoring delayed auditory feedback but not after practicing while compensating for the delayed feedback. Together, these findings suggest an abnormal transition from feedforward to feedback control in expert piano performance with psychological stress, which can be mitigated through specialized sensorimotor training that involves piano practice while volitionally ignoring the artificially delayed provision of auditory feedback.


2011 ◽  
Vol 105 (2) ◽  
pp. 846-859 ◽  
Author(s):  
Lore Thaler ◽  
Melvyn A. Goodale

Studies that have investigated how sensory feedback about the moving hand is used to control hand movements have relied on paradigms such as pointing or reaching that require subjects to acquire target locations. In the context of these target-directed tasks, it has been found repeatedly that the human sensory-motor system relies heavily on visual feedback to control the ongoing movement. This finding has been formalized within the framework of statistical optimality according to which different sources of sensory feedback are combined such as to minimize variance in sensory information during movement control. Importantly, however, many hand movements that people perform every day are not target-directed, but based on allocentric (object-centered) visual information. Examples of allocentric movements are gesture imitation, drawing, or copying. Here we tested if visual feedback about the moving hand is used in the same way to control target-directed and allocentric hand movements. The results show that visual feedback is used significantly more to reduce movement scatter in the target-directed as compared with the allocentric movement task. Furthermore, we found that differences in the use of visual feedback between target-directed and allocentric hand movements cannot be explained based on differences in uncertainty about the movement goal. We conclude that the role played by visual feedback for movement control is fundamentally different for target-directed and allocentric movements. The results suggest that current computational and neural models of sensorimotor control that are based entirely on data derived from target-directed paradigms have to be modified to accommodate performance in the allocentric tasks used in our experiments. As a consequence, the results cast doubt on the idea that models of sensorimotor control developed exclusively from data obtained in target-directed paradigms are also valid in the context of allocentric tasks, such as drawing, copying, or imitative gesturing, that characterize much of human behavior.


2019 ◽  
Vol 67 (4) ◽  
pp. 477-483
Author(s):  
Mauricio Barramuño ◽  
Pablo Valdés-Badilla ◽  
Exequiel Guevara

Introduction: Human motor control requires a learning process and it can be trained by means of various sensory feedback sources.Objective: To determine variations in glenohumeral movement control by learning in young adults exposed to an auditory feedback system while they perform object translation tasks classified by difficulty level.Materials and methods: The study involved 45 volunteers of both sexes (22 women), aged between 18 and 32 years. Glenohumeral movement control was measured by means of the root mean square (RMS) of the accelerometry signal, while task execution speed (TES) was measured using an accelerometer during the execution of the task according to its difficulty (easy, moderate and hard) in four stages of randomized intervention (control, pre-exposure, exposure-with auditory feedback, and post-exposure).Results: Statistically significant differences (p<0.001) were found between the pre-exposure and exposure stages and between pre-exposure and post-exposure stages. A significant increase (p <0.001) in TES was identified between the pre-exposure and exposure stages for tasks classified as easy and hard, respectively.Conclusion: The use of an auditory feedback system in young adults without pathologies enhanced learning and glenohumeral movement control without reducing TES. This effect was maintained after the feedback, so the use of this type of feedback system in healthy individuals could result in a useful strategy for the training of motor control of the shoulder.


2017 ◽  
Vol 118 (5) ◽  
pp. 2711-2726 ◽  
Author(s):  
Sae Franklin ◽  
Daniel M. Wolpert ◽  
David W. Franklin

Adaptation to novel dynamics requires learning a motor memory, or a new pattern of predictive feedforward motor commands. Recently, we demonstrated the upregulation of rapid visuomotor feedback gains early in curl force field learning, which decrease once a predictive motor memory is learned. However, even after learning is complete, these feedback gains are higher than those observed in the null field trials. Interestingly, these upregulated feedback gains in the curl field were not observed in a constant force field. Therefore, we suggest that adaptation also involves selectively tuning the feedback sensitivity of the sensorimotor control system to the environment. Here, we test this hypothesis by measuring the rapid visuomotor feedback gains after subjects adapt to a variety of novel dynamics generated by a robotic manipulandum in three experiments. To probe the feedback gains, we measured the magnitude of the motor response to rapid shifts in the visual location of the hand during reaching. While the feedback gain magnitude remained similar over a larger than a fourfold increase in constant background load, the feedback gains scaled with increasing lateral resistance and increasing instability. The third experiment demonstrated that the feedback gains could also be independently tuned to perturbations to the left and right, depending on the lateral resistance, demonstrating the fractionation of feedback gains to environmental dynamics. Our results show that the sensorimotor control system regulates the gain of the feedback system as part of the adaptation process to novel dynamics, appropriately tuning them to the environment. NEW & NOTEWORTHY Here, we test whether rapid visuomotor feedback responses are selectively tuned to the task dynamics. The responses do not exhibit gain scaling, but they do vary with the level and stability of task dynamics. Moreover, these feedback gains are independently tuned to perturbations to the left and right, depending on these dynamics. Our results demonstrate that the sensorimotor control system regulates the feedback gain as part of the adaptation process, tuning them appropriately to the environment.


2019 ◽  
Author(s):  
Amanda M. Zimmet ◽  
Amy J. Bastian ◽  
Noah J. Cowan

ABSTRACTIt is thought that the brain does not simply react to sensory feedback, but rather uses an internal model of the body to predict the consequences of motor commands before sensory feedback arrives. Time-delayed sensory feedback can then be used to correct for the unexpected—perturbations, motor noise, or a moving target. The cerebellum has been implicated in this predictive control process. Here we show that the feedback gain in patients with cerebellar ataxia matches that of healthy subjects, but that patients exhibit substantially more phase lag. This difference is captured by a computational model incorporating a Smith predictor in healthy subjects that is missing in patients, supporting the predictive role of the cerebellum in feedback control. Lastly, we improve cerebellar patients’ movement control by altering (phase advancing) the visual feedback they receive from their own self movement in a simplified virtual reality setup.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Amanda M Zimmet ◽  
Di Cao ◽  
Amy J Bastian ◽  
Noah J Cowan

It is thought that the brain does not simply react to sensory feedback, but rather uses an internal model of the body to predict the consequences of motor commands before sensory feedback arrives. Time-delayed sensory feedback can then be used to correct for the unexpected—perturbations, motor noise, or a moving target. The cerebellum has been implicated in this predictive control process. Here, we show that the feedback gain in patients with cerebellar ataxia matches that of healthy subjects, but that patients exhibit substantially more phase lag. This difference is captured by a computational model incorporating a Smith predictor in healthy subjects that is missing in patients, supporting the predictive role of the cerebellum in feedback control. Lastly, we improve cerebellar patients’ movement control by altering (phase advancing) the visual feedback they receive from their own self movement in a simplified virtual reality setup.


2019 ◽  
Vol 9 (2) ◽  
pp. 25 ◽  
Author(s):  
Brian Mathias ◽  
William Gehring ◽  
Caroline Palmer

Elements in speech and music unfold sequentially over time. To produce sentences and melodies quickly and accurately, individuals must plan upcoming sequence events, as well as monitor outcomes via auditory feedback. We investigated the neural correlates of sequential planning and monitoring processes by manipulating auditory feedback during music performance. Pianists performed isochronous melodies from memory at an initially cued rate while their electroencephalogram was recorded. Pitch feedback was occasionally altered to match either an immediately upcoming Near-Future pitch (next sequence event) or a more distant Far-Future pitch (two events ahead of the current event). Near-Future, but not Far-Future altered feedback perturbed the timing of pianists’ performances, suggesting greater interference of Near-Future sequential events with current planning processes. Near-Future feedback triggered a greater reduction in auditory sensory suppression (enhanced response) than Far-Future feedback, reflected in the P2 component elicited by the pitch event following the unexpected pitch change. Greater timing perturbations were associated with enhanced cortical sensory processing of the pitch event following the Near-Future altered feedback. Both types of feedback alterations elicited feedback-related negativity (FRN) and P3a potentials and amplified spectral power in the theta frequency range. These findings suggest similar constraints on producers’ sequential planning to those reported in speech production.


Sign in / Sign up

Export Citation Format

Share Document