scholarly journals Electrical Brain Responses Reveal Sequential Constraints on Planning during Music Performance

2019 ◽  
Vol 9 (2) ◽  
pp. 25 ◽  
Author(s):  
Brian Mathias ◽  
William Gehring ◽  
Caroline Palmer

Elements in speech and music unfold sequentially over time. To produce sentences and melodies quickly and accurately, individuals must plan upcoming sequence events, as well as monitor outcomes via auditory feedback. We investigated the neural correlates of sequential planning and monitoring processes by manipulating auditory feedback during music performance. Pianists performed isochronous melodies from memory at an initially cued rate while their electroencephalogram was recorded. Pitch feedback was occasionally altered to match either an immediately upcoming Near-Future pitch (next sequence event) or a more distant Far-Future pitch (two events ahead of the current event). Near-Future, but not Far-Future altered feedback perturbed the timing of pianists’ performances, suggesting greater interference of Near-Future sequential events with current planning processes. Near-Future feedback triggered a greater reduction in auditory sensory suppression (enhanced response) than Far-Future feedback, reflected in the P2 component elicited by the pitch event following the unexpected pitch change. Greater timing perturbations were associated with enhanced cortical sensory processing of the pitch event following the Near-Future altered feedback. Both types of feedback alterations elicited feedback-related negativity (FRN) and P3a potentials and amplified spectral power in the theta frequency range. These findings suggest similar constraints on producers’ sequential planning to those reported in speech production.

2020 ◽  
Author(s):  
Ernest Mas-Herrero ◽  
Larissa Maini ◽  
Guillaume Sescousse ◽  
Robert J. Zatorre

ABSTRACTNeuroimaging studies have shown that, despite the abstractness of music, it may mimic biologically rewarding stimuli (e.g. food) in its ability to engage the brain’s reward circuity. However, due to the lack of research comparing music and other types of reward, it is unclear to what extent the recruitment of reward-related structures overlaps among domains. To achieve this goal, we performed a coordinate-based meta-analysis of 38 neuroimaging studies (703 subjects) comparing the brain responses specifically to music and food-induced pleasure. Both engaged a common set of brain regions including the ventromedial prefrontal cortex, ventral striatum, and insula. Yet, comparative analyses indicated a partial dissociation in the engagement of the reward circuitry as a function of the type of reward, as well as additional reward type-specific activations in brain regions related to perception, sensory processing, and learning. These results support the idea that hedonic reactions rely on the engagement of a common reward network, yet through specific routes of access depending on the modality and nature of the reward.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


2021 ◽  
Vol 39 (1) ◽  
pp. 61-71
Author(s):  
Anne-Laure Mouthon ◽  
Andreas Meyer-Heim ◽  
Reto Huber ◽  
Hubertus J.A. Van Hedel

Background: After acquired brain injury (ABI), patients show various neurological impairments and outcome is difficult to predict. Identifying biomarkers of recovery could provide prognostic information about a patient’s neural potential for recovery and improve our understanding of neural reorganization. In healthy subjects, sleep slow wave activity (SWA, EEG spectral power 1–4.5 Hz) has been linked to neuroplastic processes such as learning and brain maturation. Therefore, we suggest that SWA might be a suitable measure to investigate neural reorganization underlying memory recovery. Objectives: In the present study, we used SWA to investigate neural correlates of recovery of function in ten paediatric patients with ABI (age range 7–15 years). Methods: We recorded high-density EEG (128 electrodes) during sleep at the beginning and end of rehabilitation. We used sleep EEG data of 52 typically developing children to calculate age-normalized values for individual patients. In patients, we also assessed every-day life memory impairment at the beginning and end of rehabilitation. Results: In the course of rehabilitation, memory recovery was paralleled by longitudinal changes in SWA over posterior parietal brain areas. SWA over left prefrontal and occipital brain areas at the beginning of rehabilitation predicted memory recovery. Conclusions: We show that longitudinal sleep-EEG measurements are feasible in the clinical setting. While posterior parietal and prefrontal brain areas are known to belong to the memory “core network”, occipital brain areas have never been related to memory. While we have to remain cautious in interpreting preliminary findings, we suggest that SWA is a promising measure to investigate neural reorganization.


2015 ◽  
Vol 25 (02) ◽  
pp. 1550004 ◽  
Author(s):  
Chun-Ling Lin ◽  
Melody Jung ◽  
Ying Choon Wu ◽  
Hsiao-Ching She ◽  
Tzyy-Ping Jung

This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands — θ (4–7 Hz), α (8–13 Hz) and β (14–30 Hz) — over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs — that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left–right and anterior–posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.


2017 ◽  
Author(s):  
Jason T. Wright ◽  
Michael P. Oman-Reagan

We discuss how visions for the futures of humanity in space and SETI are intertwined, and are shaped by prior work in the fields and by science fiction. This appears in the language used in the fields, and in the sometimes implicit assumptions made in discussions of them. We give examples from articulations of the so-called Fermi Paradox, discussions of the settlement of the Solar System (in the near future) and the Galaxy (in the far future), and METI. We argue that science fiction, especially the campy variety, is a significant contributor to the ‘giggle factor’ that hinders serious discussion and funding for SETI and Solar System settlement projects. We argue that humanity's long-term future in space will be shaped by our short-term visions for who goes there and how. Because of the way they entered the fields, we recommend avoiding the term ‘colony’ and its cognates when discussing the settlement of space, as well as other terms with similar pedigrees. We offer examples of science fiction and other writing that broaden and challenge our visions of human futures in space and SETI. In an appendix, we use an analogy with the well-funded and relatively uncontroversial searches for the dark matter particle to argue that SETI's lack of funding in the national science portfolio is primarily a problem of perception, not inherent merit.Also on arXiv: https://arxiv.org/abs/1708.05318Please cite this version:Wright, Jason T., and Michael P. Oman-Reagan. “Visions of Human Futures in Space and SETI.” International Journal of Astrobiology, 2017, 1–12. doi:10.1017/S1473550417000222.


2016 ◽  
Vol 23 (2) ◽  
pp. 159
Author(s):  
Candradijaya A

Despite the well-documented model-simulated adverse climate change impact on rice yields reported elsewhere, interventions to address the issue seem to be still limited, particularly at local level. This links to the uncertainty that entails to climate projection and its likely future impact, which varies across regions and climate models. The study analyzes climate change-induced rice yield reduction and the adequacy of current adaptations, to cope with a large range of impact under various climate models. Seventeen General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) climate change with scenarios of RCP8.5 and RCP4.5, combined with CROPWAT model for near-future (2011-2040) and far-future (2041-2070) projections. The study was conducted in November-December 2013, in Ujungjaya Subdistrict, the District of Sumedang. The output confirms yield reduction to occur in the near-future, to the extent variable across the GCMs. At the highest estimation, rice yield decreases by 32.00% and 31.81%, in comparison to baseline, for near-future under RCP8.5 and RCP4.5, respectively. The reduction extends, with a slightly higher degree, to the far-future. The reduction is sensitive to variation in farming practices of the local farmers, in particular that in planting time and irrigation scheduling. The shifting of planting time to better match rainfall pattern reduces the rice yield by 12.95% for rainfed and 14.07% for the irrigated farming. Meanwhile, improved irrigation scheduling reduces the yield reduction by 16.16%. The findings provide valuable inputs for relevant authorities to understand the climate change-induced rice yield reduction, and to formalate intervention strategies for spesific-location adaptation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eric Martínez ◽  
Christoph Winter

To what extent, if any, should the law protect sentient artificial intelligence (that is, AI that can feel pleasure or pain)? Here we surveyed United States adults (n = 1,061) on their views regarding granting 1) general legal protection, 2) legal personhood, and 3) standing to bring forth a lawsuit, with respect to sentient AI and eight other groups: humans in the jurisdiction, humans outside the jurisdiction, corporations, unions, non-human animals, the environment, humans living in the near future, and humans living in the far future. Roughly one-third of participants endorsed granting personhood and standing to sentient AI (assuming its existence) in at least some cases, the lowest of any group surveyed on, and rated the desired level of protection for sentient AI as lower than all groups other than corporations. We further investigated and observed political differences in responses; liberals were more likely to endorse legal protection and personhood for sentient AI than conservatives. Taken together, these results suggest that laypeople are not by-and-large in favor of granting legal protection to AI, and that the ordinary conception of legal status, similar to codified legal doctrine, is not based on a mere capacity to feel pleasure and pain. At the same time, the observed political differences suggest that previous literature regarding political differences in empathy and moral circle expansion apply to artificially intelligent systems and extend partially, though not entirely, to legal consideration, as well.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1025 ◽  
Author(s):  
Maryam Beheshti ◽  
Ali Heidari ◽  
Bahram Saghafian

Climate change can cause serious problems for future hydropower plant projects and make them less economically justified. Changing precipitation patterns, rising temperatures, and abrupt snow melting affect river stream patterns and hydropower generation. Thus, study of climate change impacts during the useful life of a hydropower dam is essential and its outcome should be considered in assessing long-term dam feasibility. The aim of this research is to evaluate the impacts of climate change on future hydropower generation in the Karun-III dam located in the southwest region of Iran in two future tri-decadal periods: near (2020–2049) and far (2070–2099). Had-CM3 general circulation model predictions under A2 and B2 SRES scenarios were applied, and downscaled by a statistical downscaling model (SDSM). An artificial neural network (ANN) and HEC-ResSim reservoir model respectively simulated the rainfall–runoff process and hydropower generation. The projections showed that the Karun-III dam catchment under the two scenarios will generally become warmer and wetter with a slightly larger increase in annual precipitation in the near than the far future. Runoff followed the precipitation trend by increasing in both periods. The runoff peak also switched from April to March in both scenarios, due to higher winter precipitation, and earlier snowmelt, which was caused by temperature rise. According to both scenarios, hydropower generation increased more in the near future than in the far future. Annual average power generation increased gradually by 26.7–40.5% under A2 and by 17.4–29.3% under B2 in 2020–2049. In the far period, average power generation increased by 1.8–8.7% in A2 and by 10.5–22% under B2. In the near future, A2 showed energy deduction in the months of June and July, while B2 revealed a decrease in the months of April and June. Additionally, projections in the 2070–2099 under A2 exhibited energy reduction in the months of March through July, while B2 revealed a decrease in April through July. The framework utilized in this study can be exploited to analyze the susceptibility of hydropower production in the long term.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kamalini G. Ranasinghe ◽  
Hardik Kothare ◽  
Naomi Kort ◽  
Leighton B. Hinkley ◽  
Alexander J. Beagle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document