scholarly journals Tractor: A framework allowing for improved inclusion of admixed individuals in large-scale association studies

Author(s):  
Elizabeth G. Atkinson ◽  
Adam X. Maihofer ◽  
Masahiro Kanai ◽  
Alicia R. Martin ◽  
Konrad J. Karczewski ◽  
...  

AbstractAdmixed populations are routinely excluded from medical genomic studies due to concerns over population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with simulations and empirical data focused on admixed African-European individuals. Tractor generates ancestryspecific effect size estimates, can boost GWAS power, and improves the resolution of association signals. Using a local ancestry aware regression model, we replicate known hits for blood lipids in admixed populations, discover novel hits missed by standard GWAS procedures, and localize signals closer to putative causal variants.

2021 ◽  
Author(s):  
Gabriel Hoffman ◽  
Biao Zeng ◽  
Jaroslav Bendl ◽  
Roman Kosoy ◽  
John Fullard ◽  
...  

Abstract While large-scale genome-wide association studies (GWAS) have identified hundreds of loci associated with neuropsychiatric and neurodegenerative traits, identifying the variants, genes and molecular mechanisms underlying these traits remains challenging. Integrating GWAS results with expression quantitative trait loci (eQTLs) and identifying shared genetic architecture has been widely adopted to nominate genes and candidate causal variants. However, this integrative approach is often limited by the sample size, the statistical power of the eQTL dataset, and the strong linkage disequilibrium between variants. Here we developed the multivariate multiple QTL (mmQTL) approach and applied it to perform a large-scale trans-ethnic eQTL meta-analysis to increase power and fine-mapping resolution. Importantly, this method also increases power to identify conditional eQTL’s that are enriched for cell type specific regulatory effects. Analysis of 3,188 RNA-seq samples from 2,029 donors, including 444 non-European individuals, yields an effective sample size of 2,974, which is substantially larger than previous brain eQTL efforts. Joint statistical fine-mapping of eQTL and GWAS identified 301 variant-trait pairs for 23 brain-related traits driven by 189 unique candidate causal variants for 179 unique genes. This integrative analysis identifies novel disease genes and elucidates potential regulatory mechanisms for genes underlying schizophrenia, bipolar disorder and Alzheimer’s disease.


2021 ◽  
Author(s):  
Biao Zeng ◽  
Jaroslav Bendl ◽  
Roman Kosoy ◽  
John F. Fullard ◽  
Gabriel E. Hoffman ◽  
...  

AbstractWhile large-scale genome-wide association studies (GWAS) have identified hundreds of loci associated with neuropsychiatric and neurodegenerative traits, identifying the variants, genes and molecular mechanisms underlying these traits remains challenging. Integrating GWAS results with expression quantitative trait loci (eQTLs) and identifying shared genetic architecture has been widely adopted to nominate genes and candidate causal variants. However, this integrative approach is often limited by the sample size, the statistical power of the eQTL dataset, and the strong linkage disequilibrium between variants. Here we developed the multivariate multiple QTL (mmQTL) approach and applied it to perform a large-scale trans-ethnic eQTL meta-analysis to increase power and fine-mapping resolution. Importantly, this method also increases power to identify conditional eQTL’s that are enriched for cell type specific regulatory effects. Analysis of 3,188 RNA-seq samples from 2,029 donors, including 444 non-European individuals, yields an effective sample size of 2,974, which is substantially larger than previous brain eQTL efforts. Joint statistical fine-mapping of eQTL and GWAS identified 301 variant-trait pairs for 23 brain-related traits driven by 189 unique candidate causal variants for 179 unique genes. This integrative analysis identifies novel disease genes and elucidates potential regulatory mechanisms for genes underlying schizophrenia, bipolar disorder and Alzheimer’s disease.


Author(s):  
Leonard F. Pease ◽  
Kevin K. Anderson ◽  
Judith Ann Bamberger ◽  
Michael J. Minette

Abstract Here, we develop a statistical basis for limited adverse testing. This type of testing simultaneously evaluates system performance against minimum requirements and minimizes costs, particularly for large-scale engineering projects. Because testing is often expensive and narrow in scope, the data obtained are relatively limited—precisely the opposite of the recent big data movement but no less compelling. Although a remarkably common approach for industrial and large-scale government projects, a statistical basis for adverse testing remains poorly explored. Here, we prove mathematically, under specific conditions, that setting each independent variable to an adverse condition leads to a similar level of adversity in the dependent variable. For example, setting all normally distributed independent variables to at least their 95th percentile values leads to a result at the 95th percentile. The analysis considers sample size estimates to clarify the value of replicates in this type of testing, determines how many of the independent variables must be set to adverse condition values, and highlights the essential assumptions, so that engineers, statisticians, and subject matter experts know when this statistical framework may be applied successfully and design testing to satisfy statistical requisites.


2021 ◽  
Author(s):  
Masahiro Kanai ◽  
Jacob C Ulirsch ◽  
Juha Karjalainen ◽  
Mitja Kurki ◽  
Konrad J Karczewski ◽  
...  

AbstractDespite the great success of genome-wide association studies (GWAS) in identifying genetic loci significantly associated with diseases, the vast majority of causal variants underlying disease-associated loci have not been identified1–3. To create an atlas of causal variants, we performed and integrated fine-mapping across 148 complex traits in three large-scale biobanks (BioBank Japan4,5, FinnGen6, and UK Biobank7,8; total n = 811,261), resulting in 4,518 variant-trait pairs with high posterior probability (> 0.9) of causality. Of these, we found 285 high-confidence variant-trait pairs replicated across multiple populations, and we characterized multiple contributors to the surprising lack of overlap among fine-mapping results from different biobanks. By studying the bottlenecked Finnish and Japanese populations, we identified 21 and 26 putative causal coding variants with extreme allele frequency enrichment (> 10-fold) in these two populations, respectively. Aggregating data across populations enabled identification of 1,492 unique fine-mapped coding variants and 176 genes in which multiple independent coding variants influence the same trait (i.e., with an allelic series of coding variants). Our results demonstrate that fine-mapping in diverse populations enables novel insights into the biology of complex traits by pinpointing high-confidence causal variants for further characterization.


2017 ◽  
Author(s):  
Thomas Dias-Alves ◽  
Julien Mairal ◽  
Michael G.B. Blum

AbstractAdmixture between populations provides opportunity to study biological adaptation and phenotypic variation. Admixture studies rely on local ancestry inference for admixed individuals, which consists of computing at each locus the number of copies that originate from ancestral source populations. Existing software packages for local ancestry inference are tuned to provide accurate results on human data and recent admixture events. Here, we introduce Loter, an open-source software package that does not require any biological parameter besides haplotype data in order to make local ancestry inference available for a wide range of species. Using simulations, we compare the performance of Loter to HAPMIX, LAMP-LD, and RFMix. HAPMIX is the only software severely impacted by imperfect haplotype reconstruction. Loter is the less impacted software by increasing admixture time when considering simulated and admixed human genotypes. For simulations of admixed Populus genotypes, Loter and LAMP-LD are robust to increasing admixture times by contrast to RFMix. When comparing length of reconstructed and true ancestry tracts, Loter and LAMP-LD provide results whose accuracy is again more robust than RFMix to increasing admixture times. We apply Loter to individuals resulting from admixture between Populus trichocarpa and Populus balsamifera and lengths of ancestry tracts indicate that admixture took place around 100 generations ago. We expect that providing a rapid and parameter-free software for local ancestry inference will make more accessible genomic studies about admixture processes.


2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel E. Runcie ◽  
Jiayi Qu ◽  
Hao Cheng ◽  
Lorin Crawford

AbstractLarge-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed effect model, a tool notorious for its fragility when applied to more than a handful of traits. We present , a statistical framework and associated software package for mixed model analyses of a virtually unlimited number of traits. Using three examples with real plant data, we show that can leverage thousands of traits at once to significantly improve genetic value prediction accuracy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
James M. Kunert-Graf ◽  
Nikita A. Sakhanenko ◽  
David J. Galas

Abstract Background Permutation testing is often considered the “gold standard” for multi-test significance analysis, as it is an exact test requiring few assumptions about the distribution being computed. However, it can be computationally very expensive, particularly in its naive form in which the full analysis pipeline is re-run after permuting the phenotype labels. This can become intractable in multi-locus genome-wide association studies (GWAS), in which the number of potential interactions to be tested is combinatorially large. Results In this paper, we develop an approach for permutation testing in multi-locus GWAS, specifically focusing on SNP–SNP-phenotype interactions using multivariable measures that can be computed from frequency count tables, such as those based in Information Theory. We find that the computational bottleneck in this process is the construction of the count tables themselves, and that this step can be eliminated at each iteration of the permutation testing by transforming the count tables directly. This leads to a speed-up by a factor of over 103 for a typical permutation test compared to the naive approach. Additionally, this approach is insensitive to the number of samples making it suitable for datasets with large number of samples. Conclusions The proliferation of large-scale datasets with genotype data for hundreds of thousands of individuals enables new and more powerful approaches for the detection of multi-locus genotype-phenotype interactions. Our approach significantly improves the computational tractability of permutation testing for these studies. Moreover, our approach is insensitive to the large number of samples in these modern datasets. The code for performing these computations and replicating the figures in this paper is freely available at https://github.com/kunert/permute-counts.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


Sign in / Sign up

Export Citation Format

Share Document