scholarly journals ATM Inhibition Synergizes with Fenofibrate in High Grade Serous Ovarian Cancer Cells

2020 ◽  
Author(s):  
Chi-Wei Chen ◽  
Raquel Buj ◽  
Erika S. Dahl ◽  
Kelly E. Leon ◽  
Katherine M. Aird

AbstractBackgroundEpithelial ovarian cancer (EOC) is the deadliest gynecological malignancy in the United States with high grade serous ovarian cancer (HGSOC) as the most commonly diagnosed subtype. While therapies targeting deficiencies in the homologous recombination (HR) pathway are emerging as the standard treatment for HGSOC patients, this strategy is limited to the 50% of patients with a deficiency in this pathway. Therefore, patients with HR-proficient tumors are likely to be resistant to these therapies and require alternative strategies.MethodsData from HGSOC patients in The Cancer Genome Atlas (TCGA) were analyzed for ATM status, ATM and PPARα expression, and used to perform Gene Set Enrichment Analysis (GSEA). Screening data from the Dependency Map were analyzed to identify FDA-approved drugs that preferentially inhibit ATM-low cancer cells. In vitro studies were performed to determine whether ATM inhibitors synergize with the PPARα agonist fenofibrate in HGSOC cell lines.ResultsThe HR gene Ataxia Telangiectasia Mutated (ATM) is wildtype in the majority of HGSOC patients and its kinase activity is upregulated compared to normal fallopian tube tissue. As high ATM has been associated with poor overall and progression-free survival, targeting ATM may be beneficial for a subset of HGSOC patients. Clinical trials of ATM inhibitors are commencing; however, ATM inhibitors are not effective as single agents. We aimed to explore novel therapeutic vulnerabilities of ATM deficient cells to develop a combinatorial therapy. Using data from TCGA, we found that multiple pathways related to metabolism are inversely correlated with ATM expression, suggesting that combining ATM inhibition and metabolic inhibition would be effective. Indeed, analysis of FDA-approved drugs from the Dependency Map demonstrated that ATM low cell lines are more sensitive to fenofibrate, a PPARα agonist that has been previously shown to affect multiple cellular metabolic pathways. Consistently, PPARα signaling is associated with ATM expression. We validated that combined inhibition of ATM and treatment with fenofibrate is synergistic in multiple HGSOC cell lines by inducing senescence.ConclusionsOur results suggest that metabolic changes induced by ATM inhibitors are a potential target for the treatment for HGSOC.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248941
Author(s):  
Mona Al-Mugotir ◽  
Jeffrey J. Lovelace ◽  
Joseph George ◽  
Mika Bessho ◽  
Dhananjaya Pal ◽  
...  

Synthetic lethality is a successful strategy employed to develop selective chemotherapeutics against cancer cells. Inactivation of RAD52 is synthetically lethal to homologous recombination (HR) deficient cancer cell lines. Replication protein A (RPA) recruits RAD52 to repair sites, and the formation of this protein-protein complex is critical for RAD52 activity. To discover small molecules that inhibit the RPA:RAD52 protein-protein interaction (PPI), we screened chemical libraries with our newly developed Fluorescence-based protein-protein Interaction Assay (FluorIA). Eleven compounds were identified, including FDA-approved drugs (quinacrine, mitoxantrone, and doxorubicin). The FluorIA was used to rank the compounds by their ability to inhibit the RPA:RAD52 PPI and showed mitoxantrone and doxorubicin to be the most effective. Initial studies using the three FDA-approved drugs showed selective killing of BRCA1-mutated breast cancer cells (HCC1937), BRCA2-mutated ovarian cancer cells (PE01), and BRCA1-mutated ovarian cancer cells (UWB1.289). It was noteworthy that selective killing was seen in cells known to be resistant to PARP inhibitors (HCC1937 and UWB1 SYr13). A cell-based double-strand break (DSB) repair assay indicated that mitoxantrone significantly suppressed RAD52-dependent single-strand annealing (SSA) and mitoxantrone treatment disrupted the RPA:RAD52 PPI in cells. Furthermore, mitoxantrone reduced radiation-induced foci-formation of RAD52 with no significant activity against RAD51 foci formation. The results indicate that the RPA:RAD52 PPI could be a therapeutic target for HR-deficient cancers. These data also suggest that RAD52 is one of the targets of mitoxantrone and related compounds.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1206 ◽  
Author(s):  
Sara Bouberhan ◽  
Lauren Philp ◽  
Sarah Hill ◽  
Linah F. Al-Alem ◽  
Bo Rueda

High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecologic cancer in the United States. Genomic analysis revealed roughly half of HGSOC display homologous repair deficiencies. An improved understanding of the genomic and somatic mutations that influence DNA repair led to the development of poly(ADP-ribose) polymerase inhibitors for the treatment of ovarian cancer. In this review, we explore the preclinical and clinical studies that led to the development of FDA approved drugs that take advantage of the synthetic lethality concept, the implementation of the early phase trials, the development of companion diagnostics and proposed mechanisms of resistance.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Åsa Fransson ◽  
Daria Glaessgen ◽  
Jessica Alfredsson ◽  
Klas G. Wiman ◽  
Svetlana Bajalica-Lagercrantz ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1711
Author(s):  
Michelle Bilbao ◽  
Chelsea Katz ◽  
Stephanie L. Kass ◽  
Devon Smith ◽  
Krystal Hunter ◽  
...  

Recurrent high-grade serous ovarian cancer (HGSC) is clinically very challenging and prematurely shortens patients’ lives. Recurrent ovarian cancer is characterized by high tumor heterogeneity; therefore, it is susceptible to epigenetic therapy in classic 2D tissue culture and rodent models. Unfortunately, this success has not translated well into clinical trials. Utilizing a 3D spheroid model over a period of weeks, we were able to compare the efficacy of classic chemotherapy and epigenetic therapy on recurrent ovarian cancer cells. Unexpectedly, in our model, a single dose of paclitaxel alone caused the exponential growth of recurrent high-grade serous epithelial ovarian cancer over a period of weeks. In contrast, this effect is not only opposite under treatment with panobinostat, but panobinostat reverses the repopulation of cancer cells following paclitaxel treatment. In our model, we also demonstrate differences in the drug-treatment sensitivity of classic chemotherapy and epigenetic therapy. Moreover, 3D-derived ovarian cancer cells demonstrate induced proliferation, migration, invasion, cancer colony formation and chemoresistance properties after just a single exposure to classic chemotherapy. To the best of our knowledge, this is the first evidence demonstrating a critical contrast between short and prolonged post-treatment outcomes following classic chemotherapy and epigenetic therapy in recurrent high-grade serous ovarian cancer in 3D culture.


2018 ◽  
Vol 433 ◽  
pp. 221-231 ◽  
Author(s):  
Subbulakshmi Karthikeyan ◽  
Angela Russo ◽  
Matthew Dean ◽  
Daniel D. Lantvit ◽  
Michael Endsley ◽  
...  

2021 ◽  
Author(s):  
Cassie Liu ◽  
Catalina Muñoz-Trujillo ◽  
John A. Katzenellenbogen ◽  
Benita S. Katzenellenbogen ◽  
Adam R. Karpf

Sign in / Sign up

Export Citation Format

Share Document