scholarly journals Influence of the microenvironment on the modulation of the host response by the typhoid toxin

2020 ◽  
Author(s):  
Océane C.B. Martin ◽  
Deborah Butter ◽  
Eleni Paparouna ◽  
Sofia D.P. Theodorou ◽  
Maria M. Haykal ◽  
...  

SummaryBacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram negative bacteria, enriched in the microbiota of Inflammatory Bowel Disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We have addressed the role of the typhoid toxin in the modulation of the host-microbial interaction in health and disease.Infection with a genotoxigenic Salmonella protected mice from intestinal inflammation. The toxin-induced DNA damage caused senescence in vivo, which was uncoupled from the inflammatory response, and associated with the maintenance of an anti-inflammatory environment. This effect was lost when infection occurred in mice suffering from inflammatory conditions that mimic Ulcerative Colitis, a form of IBD.These data highlight a complex context-dependent crosstalk between bacterial genotoxins-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.

2019 ◽  
Vol 5 (3) ◽  
pp. eaav1118 ◽  
Author(s):  
Ming Tang ◽  
Zhiming Li ◽  
Chaohua Zhang ◽  
Xiaopeng Lu ◽  
Bo Tu ◽  
...  

The activation of ataxia-telangiectasia mutated (ATM) upon DNA damage involves a cascade of reactions, including acetylation by TIP60 and autophosphorylation. However, how ATM is progressively deactivated after completing DNA damage repair remains obscure. Here, we report that sirtuin 7 (SIRT7)–mediated deacetylation is essential for dephosphorylation and deactivation of ATM. We show that SIRT7, a class III histone deacetylase, interacts with and deacetylates ATM in vitro and in vivo. In response to DNA damage, SIRT7 is mobilized onto chromatin and deacetylates ATM during the late stages of DNA damage response, when ATM is being gradually deactivated. Deacetylation of ATM by SIRT7 is prerequisite for its dephosphorylation by its phosphatase WIP1. Consequently, depletion of SIRT7 or acetylation-mimic mutation of ATM induces persistent ATM phosphorylation and activation, thus leading to impaired DNA damage repair. Together, our findings reveal a previously unidentified role of SIRT7 in regulating ATM activity and DNA damage repair.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yashar Houshyar ◽  
Luca Massimino ◽  
Luigi Antonio Lamparelli ◽  
Silvio Danese ◽  
Federica Ungaro

Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.


2006 ◽  
Vol 72 (9) ◽  
pp. 5799-5805 ◽  
Author(s):  
Catherine Daniel ◽  
Sabine Poiret ◽  
Denise Goudercourt ◽  
Veronique Dennin ◽  
Gregory Leyer ◽  
...  

ABSTRACT Studies showed that specific probiotics might provide therapeutic benefits in inflammatory bowel disease. However, a rigorous screening of new probiotics is needed to study possible adverse interactions with the host, particularly when intended for administration to individuals with certain health risks. In this context, the objective of this study was to investigate the role of three lactobacilli (LAB) on intestinal inflammation and bacterial translocation using variations of the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced acute colitis. We first compared the in vitro ability of LAB to survive gastrointestinal tract (GIT) conditions and their ability to persist in the GIT of mice following daily oral administration. As a control, we included a nonprobiotic Lactobacillus paracasei strain, previously isolated from an endocarditis patient. Feeding high doses of LAB strains to healthy and to TNBS-treated mice did not induce any detrimental effect or abnormal translocation of the bacteria. Oral administration of Lactobacillus salivarius Ls-33 had a significant preventive effect on colitis in mice, while Lactobacillus plantarum Lp-115 and Lactobacillus acidophilus NCFM did not. None of the three selected LAB strains translocated to extraintestinal organs of TNBS-treated mice. In contrast, L. paracasei exacerbated colitis under severe inflammatory conditions and translocated to extraintestinal organs. This study showed that evaluations of the safety and functionality of new probiotics are recommended. We conclude that not all lactobacilli have similar effects on intestinal inflammation and that selected probiotics such as L. salivarius Ls-33 may be considered in the prevention or treatment of intestinal inflammation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 774-774
Author(s):  
Maurice Reimann ◽  
Christoph Loddenkemper ◽  
Cornelia Rudolph ◽  
Harald Stein ◽  
Brigitte Schlegelberger ◽  
...  

Abstract Activation of the DNA damage response (DDR) was recently claimed to serve as a critical anti−cancer barrier in early human tumorigenesis (Bartkova−J et al., and Gorgoulis−VG et al., Nature, 2005). As a consequence, deregulation of the DDR machinery may be required for tumor manifestation. Myc activation is an oncogenic event frequently detected in malignant lymphomas. It is known that constitutive Myc expression provokes apoptosis via the ARF/p53 pathway as a cellular failsafe mechanism to counteract malignant transformation, but the potential role of Myc signaling to the DDR machinery, mediated via the Atm (ataxia telangiectasia mutated) kinase, as another putative tumor suppressive restraint remains still elusive. Utilizing a tamoxifen−regulatable Myc system as well as RNA interference in vitro, we found in cell−based models that acute induction of Myc, associated with an increased production of reactive oxygen species (ROS) and marks of DNA strand breaks, leads to p53 activation which is mainly mediated by Atm and its upstream regulator PP5. To further examine the role of Atm during Myc−driven tumorigenesis in vivo, we intercrossed Atm knockout mice to Eμ−myc transgenic mice that develop B−cell lymphomas. Lymphomas formed significantly faster in the absence of Atm, mostly due to a significant apoptotic defect in Atm−/− lymphomas compared to Atm+/+ derived (referred to as ‘control’) lymphomas. In accordance with our in vitro findings, we detected significantly elevated levels of ROS−induced oxidative DNA damage and γ−H2AX foci in Myc−driven lymphomas. Importantly, constitutive expression of Myc selected against components of the Atm−governed DDR in a subset of control lymphomas. Like Atm deficiency, these lesions predetermined a poor response in subsequent cytotoxicity assays in vitro and anticancer therapy in vivo, since DNA damaging treatments also produce apoptosis via PP5/Atm. The role for ROS as inducers of DNA damage during the execution of Myc−induced apoptosis was further substantiated by the finding that Eμ−myc transgenic mice continuously exposed to the ROS scavenger N−acetylcysteine (starting prenatally) developed lymphomas with significantly reduced levels of spontaneous apoptosis and with less marks of DNA damage (i.e. γ−H2AX foci), but a retained ability to respond to anticancer therapy in vitro and in vivo. Hence, Atm eliminates pre−neoplastic lesions by converting oncogenic signaling into apoptosis, while selection for an attenuated Atm response permits lymphoma formation, and, in turn, has profound implications for reduced efficacy of DNA damaging therapies.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Maria Rosaria Perri ◽  
Carmen Romano ◽  
Mariangela Marrelli ◽  
Ludovica Zicarelli ◽  
Claudia-Crina Toma ◽  
...  

Inflammatory bowel disease (IBD) is a group of complex chronic inflammatory conditions affecting the gastrointestinal tract. It is linked to a number of genetic and environmental factors able to perturb the immune-microbiome axis. Diet is the most investigated variable both for its role in the etiology of IBD and for its beneficial potential in the treatment of the symptoms. Dietary products may influence intestinal inflammation through different mechanisms of action, such as the modulation of inflammatory mediators, the alteration of gene expression, changes in gut permeability, and modifications in enteric flora composition. A consisting number of studies deal with the link between nutrition and microbial community, and particular attention is paid to plant-based foods. The effects of the dietary intake of different fruits have been investigated so far. This review aims to present the most recent studies concerning the beneficial potential of fruit consumption on human gut microbiota. Investigated plant species are described, and obtained results are presented and discussed in order to provide an overview of both in vitro and in vivo effects of fruits, their juices, and freeze-dried powders.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
You-hong Wang ◽  
Zhen Guo ◽  
Liang An ◽  
Yong Zhou ◽  
Heng Xu ◽  
...  

AbstractRadioresistance continues to be the leading cause of recurrence and metastasis in nasopharyngeal cancer. Long noncoding RNAs are emerging as regulators of DNA damage and radioresistance. LINC-PINT was originally identified as a tumor suppressor in various cancers. In this study, LINC-PINT was significantly downregulated in nasopharyngeal cancer tissues than in rhinitis tissues, and low LINC-PINT expressions showed poorer prognosis in patients who received radiotherapy. We further identified a functional role of LINC-PINT in inhibiting the malignant phenotypes and sensitizing cancer cells to irradiation in vitro and in vivo. Mechanistically, LINC-PINT was responsive to DNA damage, inhibiting DNA damage repair through ATM/ATR-Chk1/Chk2 signaling pathways. Moreover, LINC-PINT increased radiosensitivity by interacting with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and negatively regulated the expression and recruitment of DNA-PKcs. Therefore, these findings collectively support the possibility that LINC-PINT serves as an attractive target to overcome radioresistance in NPC.


NAR Cancer ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Luisa Statello ◽  
Mohamad M Ali ◽  
Silke Reischl ◽  
Sagar Mahale ◽  
Subazini Thankaswamy Kosalai ◽  
...  

Abstract Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1–cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


2009 ◽  
Vol 284 (24) ◽  
pp. 16066-16070 ◽  
Author(s):  
Navasona Krishnan ◽  
Dae Gwin Jeong ◽  
Suk-Kyeong Jung ◽  
Seong Eon Ryu ◽  
Andrew Xiao ◽  
...  

In mammalian cells, the DNA damage-related histone H2A variant H2A.X is characterized by a C-terminal tyrosyl residue, Tyr-142, which is phosphorylated by an atypical kinase, WSTF. The phosphorylation status of Tyr-142 in H2A.X has been shown to be an important regulator of the DNA damage response by controlling the formation of γH2A.X foci, which are platforms for recruiting molecules involved in DNA damage repair and signaling. In this work, we present evidence to support the identification of the Eyes Absent (EYA) phosphatases, protein-tyrosine phosphatases of the haloacid dehalogenase superfamily, as being responsible for dephosphorylating the C-terminal tyrosyl residue of histone H2A.X. We demonstrate that EYA2 and EYA3 displayed specificity for Tyr-142 of H2A.X in assays in vitro. Suppression of eya3 by RNA interference resulted in elevated basal phosphorylation and inhibited DNA damage-induced dephosphorylation of Tyr-142 of H2A.X in vivo. This study provides the first indication of a physiological substrate for the EYA phosphatases and suggests a novel role for these enzymes in regulation of the DNA damage response.


2021 ◽  
pp. 1-13
Author(s):  
Jonas Folke ◽  
Sertan Arkan ◽  
Isak Martinsson ◽  
Susana Aznar ◽  
Gunnar Gouras ◽  
...  

Background: α-synuclein (α-syn) aggregation contributes to the progression of multiple neurodegenerative diseases. We recently found that the isoform b of the co-chaperone DNAJB6 is a strong suppressor of a-syn aggregation in vivo and in vitro. However, nothing is known about the role of the endogenous isoform b of DNAJB6 (DNAJB6b) in health and disease, due to lack of specific antibodies. Objective: Here we generated a novel anti-DNAJB6b antibody to analyze the localization and expression this isoform in cells, in tissue and in clinical material. Methods: To address this we used immunocytochemistry, immunohistochemistry, as well as a novel quantitative DNAJB6 specific ELISA method. Results: The endogenous protein is mainly expressed in the cytoplasm and in neurites in vitro, where it is found more in dendrites than in axons. We further verified in vivo that DNAJB6b is expressed in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is a neuronal subpopulation highly sensitive to α-syn aggregation, that degenerate to a large extend in patients with Parkinson’s disease (PD) and multiple system atrophy (MSA). When we analyzed the expression levels of DNAJB6b in brain material from PD and MSA patients, we found a downregulation of DNAJB6b by use of ELISA based quantification. Interestingly, this was also true when analyzing tissue from patients with progressive supranuclear palsy, a taupathic atypical parkinsonian disorder. However, the total level of DNAJB6 was upregulated in these three diseases, which may indicate an upregulation of the other major isoform of DNAJB6, DNAJB6a. Conclusion: This study shows that DNAJB6b is downregulated in several different neurodegenerative diseases, which makes it an interesting target to further investigate in relation to amyloid protein aggregation and disease progression.


Sign in / Sign up

Export Citation Format

Share Document