scholarly journals Interplay of BAF and MLL4 promotes cell type-specific enhancer activation

2020 ◽  
Author(s):  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Tommy O’Haren ◽  
Kaitlin McKernan ◽  
Zhijiang Yan ◽  
...  

AbstractCell type-specific enhancers are activated by coordinated actions of lineage-determining transcription factors (LDTFs) and chromatin regulators. The SWI/SNF complex BAF and the histone H3K4 methyltransferase MLL4 (KMT2D) are both implicated in enhancer activation. However, the interplay between BAF and MLL4 in enhancer activation remains unclear. Using adipogenesis as a model system, we identified BAF as the major SWI/SNF complex that colocalizes with MLL4 and LDTFs on active enhancers and is required for cell differentiation. In contrast, the promoter enriched SWI/SNF complex PBAF is dispensable for adipogenesis. By depleting BAF subunits SMARCA4 (BRG1) and SMARCB1 (SNF5) as well as MLL4 in cells, we showed that BAF and MLL4 reciprocally regulate each other’s binding on active enhancers before and during adipogenesis. By focusing on enhancer activation by the adipogenic transcription factor C/EBPβ without inducing cell differentiation, we provide direct evidence for an interdependent relationship between BAF and MLL4 in activating cell type-specific enhancers. Together, these findings reveal a positive feedback between BAF and MLL4 in promoting LDTF-dependent activation of cell type-specific enhancers.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Zhijiang Yan ◽  
Kaitlin McKernan ◽  
Tommy O’Haren ◽  
...  

AbstractCell type-specific enhancers are activated by coordinated actions of lineage-determining transcription factors (LDTFs) and chromatin regulators. The SWI/SNF chromatin remodeling complex BAF and the histone H3K4 methyltransferase MLL4 (KMT2D) are both implicated in enhancer activation. However, the interplay between BAF and MLL4 in enhancer activation remains unclear. Using adipogenesis as a model system, we identify BAF as the major SWI/SNF complex that colocalizes with MLL4 and LDTFs on active enhancers and is required for cell differentiation. In contrast, the promoter enriched SWI/SNF complex PBAF is dispensable for adipogenesis. By depleting BAF subunits SMARCA4 (BRG1) and SMARCB1 (SNF5) as well as MLL4 in cells, we show that BAF and MLL4 reciprocally regulate each other’s binding on active enhancers before and during adipogenesis. By focusing on enhancer activation by the adipogenic pioneer transcription factor C/EBPβ without inducing cell differentiation, we provide direct evidence for an interdependent relationship between BAF and MLL4 in activating cell type-specific enhancers. Together, these findings reveal a positive feedback between BAF and MLL4 in promoting LDTF-dependent activation of cell type-specific enhancers.


2006 ◽  
Vol 26 (3) ◽  
pp. 1109-1123 ◽  
Author(s):  
Daniela S. Bassères ◽  
Elena Levantini ◽  
Hongbin Ji ◽  
Stefano Monti ◽  
Shannon Elf ◽  
...  

ABSTRACT The leucine zipper family transcription factor CCAAT enhancer binding protein alpha (C/EBPα) inhibits proliferation and promotes differentiation in various cell types. In this study, we show, using a lung-specific conditional mouse model of C/EBPα deletion, that loss of C/EBPα in the respiratory epithelium leads to respiratory failure at birth due to an arrest in the type II alveolar cell differentiation program. This differentiation arrest results in the lack of type I alveolar cells and differentiated surfactant-secreting type II alveolar cells. In addition to showing a block in type II cell differentiation, the neonatal lungs display increased numbers of proliferating cells and decreased numbers of apoptotic cells, leading to epithelial expansion and loss of airspace. Consistent with the phenotype observed, genes associated with alveolar maturation, survival, and proliferation were differentially expressed. Taken together, these results identify C/EBPα as a master regulator of airway epithelial maturation and suggest that the loss of C/EBPα could also be an important event in the multistep process of lung tumorigenesis. Furthermore, this study indicates that exploring the C/EBPα pathway might have therapeutic benefits for patients with respiratory distress syndromes.


1992 ◽  
Vol 12 (2) ◽  
pp. 552-562
Author(s):  
L Pani ◽  
X B Quian ◽  
D Clevidence ◽  
R H Costa

The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor.


2021 ◽  
Author(s):  
P. A. Sylvester ◽  
C. N. Jondle ◽  
K. P. Stoltz ◽  
J. Lanham ◽  
B. N. Dittel ◽  
...  

Gammaherpesviruses establish life-long infections and are associated with B cell lymphomas. Murine gammaherpesvirus-68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here we demonstrate that myeloid-specific STAT1 deficiency attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of kinase null MHV68 mutant. However, despite having gained access to splenic B cells, protein kinase null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. Importance. IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not spleen of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell-type specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.


Sign in / Sign up

Export Citation Format

Share Document