scholarly journals Fluorescent Detection of O-GlcNAc via Tandem Glycan Labeling

2020 ◽  
Author(s):  
Zhengliang L. Wu ◽  
Ang Luo ◽  
Alex Grill ◽  
Taotao Lao ◽  
Yonglong Zou ◽  
...  

ABSTRACTO-GlcNAcylation is a reversible serine/threonine glycosylation on cytosolic and nuclear proteins that are involved in various regulatory pathways. However, the detection and quantification of O-GlcNAcylation substrates have been challenging. Here we report a highly efficient method for the identification of O-GlcNAc modification via tandem glycan labeling, in which O-GlcNAc is first galactosylated and then sialylated with a fluorophore-conjugated sialic acid residue, therefore enabling highly sensitive fluorescent detection. The method is validated on various proteins that are known to be modified by O-GlcNAcylation including CK2, NOD2, SREBP1c, AKT1, PKM and PFKFB3, and on the nuclear extract of HEK293 cells. Using this method, we then report the evidence that hypoxia-inducible factor HIF1α is a target for O-GlcNAcylation, suggesting a potential direct connection between the metabolic O-GlcNAc pathway and the hypoxia pathway.

The Analyst ◽  
2021 ◽  
Vol 146 (20) ◽  
pp. 6297-6305
Author(s):  
Qinglan Miao ◽  
Ji Qi ◽  
Yuanyuan Li ◽  
Xinxia Fan ◽  
Dongmei Deng ◽  
...  

A novel paper-based chip that anchored zinc-doped carbon dots was constructed for sensitive and stable fluorescent detection of Cu2+. Zn doping increased the active sites for simplifying the modification of carbon dots.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1207
Author(s):  
Hong Jae Cheon ◽  
Quynh Huong Nguyen ◽  
Moon Il Kim

Inspired by the active site structure of natural horseradish peroxidase having iron as a pivotal element with coordinated histidine residues, we have developed histidine coated magnetic nanoparticles (His@MNPs) with relatively uniform and small sizes (less than 10 nm) through one-pot heat treatment. In comparison to pristine MNPs and other amino acid coated MNPs, His@MNPs exhibited a considerably enhanced peroxidase-imitating activity, approaching 10-fold higher in catalytic reactions. With the high activity, His@MNPs then were exploited to detect the important neurotransmitter acetylcholine. By coupling choline oxidase and acetylcholine esterase with His@MNPs as peroxidase mimics, target choline and acetylcholine were successfully detected via fluorescent mode with high specificity and sensitivity with the limits of detection down to 200 and 100 nM, respectively. The diagnostic capability of the method is demonstrated by analyzing acetylcholine in human blood serum. This study thus demonstrates the potential of utilizing His@MNPs as peroxidase-mimicking nanozymes for detecting important biological and clinical targets with high sensitivity and reliability.


2013 ◽  
Vol 49 (90) ◽  
pp. 10599 ◽  
Author(s):  
Yan-Xia Qi ◽  
Min Zhang ◽  
Qian-Qian Fu ◽  
Ran Liu ◽  
Guo-Yue Shi

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 95 ◽  
Author(s):  
Shuangjiao Xu ◽  
Kehai Zhou ◽  
Dan Fang ◽  
Lei Ma

In this paper, fluorescent copper nanoclusters (NCs) are used as a novel probe for the sensitive detection of gossypol for the first time. Based on a fluorescence quenching mechanism induced by interactions between bovine serum albumin (BSA) and gossypol, fluorescent BSA-Cu NCs were seen to exhibit a high sensitivity to gossypol in the range of 0.1–100 µM. The detection limit for gossypol is 25 nM at a signal-to-noise ratio of three, which is approximately 35 times lower than the acceptable limit (0.9 µM) defined by the US Food and Drug Administration for cottonseed products. Moreover, the proposed method for gossypol displays excellent selectivity over many common interfering species. We also demonstrate the application of the present method to the measurement of several real samples with satisfactory recoveries, and the results agree well with those obtained using the high-performance liquid chromatography (HPLC) method. The method based on Cu NCs offers the followings advantages: simplicity of design, facile preparation of nanomaterials, and low experimental cost.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Duuamene Nyimanu ◽  
Richard G. Kay ◽  
Petra Sulentic ◽  
Rhoda E. Kuc ◽  
Philip Ambery ◽  
...  

Abstract[Pyr1]apelin-13 is the predominant apelin peptide isoform in the human cardiovascular system and plasma. To date, few studies have investigated [Pyr1]apelin-13 metabolism in vivo in rats with no studies examining its stability in humans. We therefore aimed to develop an LC-MS/MS method for detection and quantification of intact [Pyr1]apelin-13 and have used this method to identify the metabolites generated in vivo in humans. [Pyr1]apelin-13 (135 nmol/min) was infused into six healthy human volunteers for 120 minutes and blood collected at time 0 and 120 minutes after infusion. Plasma was extracted in the presence of guanidine hydrochloride and analysed by LC-MS/MS. Here we report a highly sensitive, robust and reproducible method for quantification of intact [Pyr1]apelin-13 and its metabolites in human plasma. Using this method, we showed that the circulating concentration of intact peptide was 58.3 ± 10.5 ng/ml after 120 minutes infusion. We demonstrated for the first time that in humans, [Pyr1]apelin-13 was cleaved from both termini but the C-terminal was more susceptible to cleavage. Consequently, of the metabolites identified, [Pyr1]apelin-13(1–12), [Pyr1]apelin-13(1–10) and [Pyr1]apelin-13(1–6) were the most abundant. These data suggest that apelin peptides designed for use as cardiovascular therapeutics, should include modifications that minimise C-terminal cleavage.


RSC Advances ◽  
2016 ◽  
Vol 6 (64) ◽  
pp. 59882-59888 ◽  
Author(s):  
Juan Cheng ◽  
Meng Liu ◽  
Baihao Shao ◽  
Shuai Zhang ◽  
Jia Li ◽  
...  

A highly sensitive fluorescent detection cocktail has been developed for the simultaneous imaging of H2S and GSH in live cells.


Sign in / Sign up

Export Citation Format

Share Document