scholarly journals High-content Imaging-based Pooled CRISPR Screens in Mammalian Cells

Author(s):  
Xiaowei Yan ◽  
Nico Stuurman ◽  
Susana A. Ribeiro ◽  
Marvin E. Tanenbaum ◽  
Max A. Horlbeck ◽  
...  

ABSTRACTCRISPR (clustered regularly interspaced short palindromic repeats) -based gene inactivation provides a powerful means of linking genes to particular cellular phenotypes. CRISPR-based screening has mostly relied upon using large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to computationally select cells displaying a particular CRISPR-induced phenotype, mark them by photo-conversion of an expressed photo-activatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photo-conversion of cells, allowing ~1.5 million individual cells to be screened in 8 hr. We used this approach to screen 6092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a highly scalable approach to facilitate imaging-based pooled CRISPR screens.

2021 ◽  
Vol 220 (2) ◽  
Author(s):  
Xiaowei Yan ◽  
Nico Stuurman ◽  
Susana A. Ribeiro ◽  
Marvin E. Tanenbaum ◽  
Max A. Horlbeck ◽  
...  

CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.


1999 ◽  
Vol 112 (16) ◽  
pp. 2705-2714
Author(s):  
E.M. Burns ◽  
L. Christopoulou ◽  
P. Corish ◽  
C. Tyler-Smith

We have measured the mitotic loss rates of mammalian chromosomes in cultured cells. The green fluorescent protein (GFP) gene was incorporated into a non-essential chromosome so that cells containing the chromosome fluoresced green, while those lacking it did not. The proportions of fluorescent and non-fluorescent cells were measured by fluorescence activated cell sorter (FACS) analysis. Loss rates ranged from 0.005% to 0.20% per cell division in mouse LA-9 cells, and from 0.02% to 0.40% in human HeLa cells. The rate of loss was elevated by treatment with aneugens, demonstrating that the system rapidly identifies agents which induce chromosome loss in mammalian cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomomi Kaku ◽  
Kazunori Sugiura ◽  
Tetsuyuki Entani ◽  
Kenji Osabe ◽  
Takeharu Nagai

AbstractUsing the lux operon (luxCDABE) of bacterial bioluminescence system as an autonomous luminous reporter has been demonstrated in bacteria, plant and mammalian cells. However, applications of bacterial bioluminescence-based imaging have been limited because of its low brightness. Here, we engineered the bacterial luciferase (heterodimer of luxA and luxB) by fusion with Venus, a bright variant of yellow fluorescent protein, to induce bioluminescence resonance energy transfer (BRET). By using decanal as an externally added substrate, color change and ten-times enhancement of brightness was achieved in Escherichia coli when circularly permuted Venus was fused to the C-terminus of luxB. Expression of the Venus-fused luciferase in human embryonic kidney cell lines (HEK293T) or in Nicotiana benthamiana leaves together with the substrate biosynthesis-related genes (luxC, luxD and luxE) enhanced the autonomous bioluminescence. We believe the improved luciferase will forge the way towards the potential development of autobioluminescent reporter system allowing spatiotemporal imaging in live cells.


2002 ◽  
Vol 13 (9) ◽  
pp. 3078-3095 ◽  
Author(s):  
Annette L. Boman ◽  
Paul D. Salo ◽  
Melissa J. Hauglund ◽  
Nicole L. Strand ◽  
Shelly J. Rensink ◽  
...  

Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs andVPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongtao Geng ◽  
Alexandros Pertsinidis

AbstractVisualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use. Here we develop efficient and versatile systems, based on in vitro transcribed single-guide-RNAs (sgRNAs) and fluorescently-tagged recombinant, catalytically-inactivated Cas9 (dCas9) proteins. Controlled cell delivery of pre-assembled dCas9-sgRNA ribonucleoprotein (RNP) complexes enables robust genomic imaging in live cells and in early mouse embryos. We further demonstrate multiplex tagging of up to 3 genes, tracking detailed movements of chromatin segments and imaging spatial relationships between a distal enhancer and a target gene, with nanometer resolution in live cells. This simple and effective approach should facilitate visualizing chromatin dynamics and nuclear architecture in various living systems.


2016 ◽  
Vol 54 ◽  
pp. 27-41
Author(s):  
Soumendra Nath Talapatra ◽  
Priyadarshini Mitra ◽  
Snehasikta Swarnakar

Many information of biological study as stained cells analysis under microscope cannot be obtained rich information like detail morphology, shape, size, proper intensity etc. but image analysis software can easily be detected all these parameters within short duration. The cells types can be yeast cells to mammalian cells. An attempt has been made to detect cellular abnormalities from an image of metronidazole (MTZ) treated compared to control images of peripheral erythrocytes of fish by using non-commercial, open-source, CellProfiler (CP) image analysis software (Ver. 2.1.0). The comparative results were obtained after analysis the software. In conclusion, this image based screening of Giemsa stained fish erythrocytes can be a suitable tool in biological research for primary toxicity prediction at DNA level alongwith cellular phenotypes. Moreover, still suggestions are needed in relation to accuracy of present analysis for Giemsa stained fish erythrocytes because previous works have been carried out images of cells with fluorescence dye.


2001 ◽  
Vol 12 (8) ◽  
pp. 2245-2256 ◽  
Author(s):  
Elena Smirnova ◽  
Lorena Griparic ◽  
Dixie-Lee Shurland ◽  
Alexander M. van der Bliek

Mutations in the human dynamin-related protein Drp1 cause mitochondria to form perinuclear clusters. We show here that these mitochondrial clusters consist of highly interconnected mitochondrial tubules. The increased connectivity between mitochondria indicates that the balance between mitochondrial division and fusion is shifted toward fusion. Such a shift is consistent with a block in mitochondrial division. Immunofluorescence and subcellular fractionation show that endogenous Drp1 is localized to mitochondria, which is also consistent with a role in mitochondrial division. A direct role in mitochondrial division is suggested by time-lapse photography of transfected cells, in which green fluorescent protein fused to Drp1 is concentrated in spots that mark actual mitochondrial division events. We find that purified human Drp1 can self-assemble into multimeric ring-like structures with dimensions similar to those of dynamin multimers. The structural and functional similarities between dynamin and Drp1 suggest that Drp1 wraps around the constriction points of dividing mitochondria, analogous to dynamin collars at the necks of budding vesicles. We conclude that Drp1 contributes to mitochondrial division in mammalian cells.


Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 291 ◽  
Author(s):  
Chih-Yu Wu ◽  
Chao-Wei Huang ◽  
Yu-Shin Nai ◽  
Pei-Yu Chu ◽  
Chung-Hsiung Wang ◽  
...  

Recombinant proteins produced by the baculovirus expression vector system (BVES) have been widely applied in the agricultural and medical fields. However, the procedure for protein expression is inefficient and needs to be improved. Herein, we propose a simple construct that incorporates a selectable marker (enhanced green fluorescent protein, EGFP) and a picorna viral-derived “self-cleaving” 2A-like peptide to separate the EGFP and target proteins in a monocistronic baculovirus vector to facilitate isolation of the recombinant baculovirus in the BVES. In this study, porcine adiponectin (ADN), a secreted, multimeric protein with insulin-sensitizing properties, was used to demonstrate its utility in our EGFP-2A-based expression system. EGFP and ADN were simultaneously expressed by a recombinant alphabaculovirus. Co-expression of EGFP facilitates the manipulation of the following processes, such as determining expression kinetics and harvesting ADN. The results showed that the 2A “self-cleaving” process does not interfere with EGFP activity or with signal peptide removal and the secretion of recombinant ADN. Posttranslational modifications, including glycosylation, of the recombinant ADN occurred in insect cells, and the formation of various multimers was further verified. Most importantly, the insect-produced ADN showed a similar bioactivity to that of mammalian cells. This concept provides a practical and economic approach that utilizes a new combination of alphabaculovirus/insect cell expression systems for future applications.


2018 ◽  
Vol 19 (12) ◽  
pp. 3767 ◽  
Author(s):  
Qian Wang ◽  
Jian Fang ◽  
Qihua Pan ◽  
Yizhou Wang ◽  
Ting Xue ◽  
...  

The recombinant baculovirus has been widely used as an efficient tool to mediate gene delivery into mammalian cells but has barely been used in fish cells. In the present study, we constructed a recombinant baculovirus containing the dual-promoter cytomegalovirus (CMV) and white spot syndrome virus (WSSV) immediate-early gene 1 (ie1) (WSSV ie1), followed by a puromycin–green fluorescent protein (Puro-GFP, pf) or puromycin–red fluorescent protein (Puro-RFP, pr) cassette, which simultaneously allowed for easy observation, rapid titer determination, drug selection, and exogenous gene expression. This recombinant baculovirus was successfully transduced into fish cells, including Mylopharyngodon piceus bladder (MPB), fin (MPF), and kidney (MPK); Oryzias latipes spermatogonia (SG3); and Danio rerio embryonic fibroblast (ZF4) cells. Stable transgenic cell lines were generated after drug selection, which was further verified by Western blot. A cell monoclonal formation assay proved the stable heredity of transgenic MPB cells. In addition, a recombinant baculovirus containing a pr cassette and four transcription factors for induced pluripotent stem cells (iPSC) was constructed and transduced into ZF4 cells, and these exogenous genes were simultaneously delivered and transcribed efficiently in drug-selected ZF4 cells, proving the practicability of this modified recombinant baculovirus system. We also proved that the WSSV ie1 promoter had robust activity in fish cells in vitro and in vivo. Taken together, this modified recombinant baculovirus can be a favorable transgenic tool to obtain transient or stable transgenic fish cells.


Sign in / Sign up

Export Citation Format

Share Document