scholarly journals Single-cell morphometrics reveals ancestral principles of notochord development

2020 ◽  
Author(s):  
Toby GR Andrews ◽  
Wolfram Ponisch ◽  
Ewa K Paluch ◽  
Benjamin Steventon ◽  
Elia Benito-Gutierrez

During development, embryonic tissues are formed by the dynamic behaviours of their constituent cells, whose collective actions are tightly regulated in space and time. To understand such cell behaviours and how they have evolved, it is necessary to develop quantitative approaches to map out morphogenesis, so comparisons can be made across different tissues and organisms. With this idea in mind, here we sought to investigate ancestral principles of notochord development, by building a quantitative portrait of notochord morphogenesis in the amphioxus embryo, a basally-branching member of the chordate phylum. To this end, we developed a single-cell morphometrics pipeline to comprehensively catalogue the morphologies of thousands of notochord cells, and to project them simultaneously into a common mathematical space termed morphospace. This approach revealed complex patterns of cell-type specific shape trajectories, akin to those obtained using single-cell genomic approaches. By spatially mapping single-cell shape trajectories in whole segmented notochords, we found evidence of spatial and temporal variation in developmental dynamics. Such variations included temporal gradients of morphogenesis across the anterior-posterior embryonic axis, divergence of trajectories to different morphologies, and the convergence of different trajectories onto common morphologies. Through geometric simulations, we also identified an antagonistic relationship between cell shape regulation and growth that enables convergent extension to occur in two steps. First, by allowing growth to counterbalance loss of anterior-posterior cell length during cell intercalation. Secondly, by allowing growth to further increase cell length once cells have intercalated and aligned to the axial midline, thereby facilitating a second phase of tissue elongation. Finally, we show that apart from a complex coordination of individual cellular behaviours, posterior addition from proliferating progenitors is essential for full notochord elongation in amphioxus, a mechanism previously described only in vertebrates. This novel approach to quantifying morphogenesis paves the way towards comparative studies, and mechanistic explanations for the emergence of form over developmental and evolutionary time scales.

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 289-300 ◽  
Author(s):  
P. Wilson ◽  
R. Keller

We have analyzed cell behavior in the organizer region of the Xenopus laevis gastrula by making high resolution time-lapse recordings of cultured explants. The dorsal marginal zone, comprising among other tissues prospective notochord and somitic mesoderm, was cut from early gastrulae and cultured in a way that permits high resolution microscopy of the deep mesodermal cells, whose organized intercalation produces the dramatic movements of convergent extension. At first, the explants extend without much convergence. This initial expansion results from rapid radial intercalation, or exchange of cells between layers. During the second half of gastrulation, the explants begin to converge strongly toward the midline while continuing to extend vigorously. This second phase of extension is driven by mediolateral cell intercalation, the rearrangement of cells within each layer to lengthen and narrow the array. Toward the end of gastrulation, fissures separate the central notochord from the somitic mesoderm on each side, and cells in both tissues elongate mediolaterally as they intercalate. A detailed analysis of the spatial and temporal pattern of these behaviors shows that both radial and mediolateral intercalation begin first in anterior tissue, demonstrating that the anterior-posterior timing gradient so evident in the mesoderm of the neurula is already forming in the gastrula. Finally, time-lapse recordings of intact embryos reveal that radial intercalation takes places primarily before involution, while mediolateral intercalation begins as the mesoderm goes around the lip. We discuss the significance of these findings to our understanding of both the mechanics of gastrulation and the patterning of the dorsal axis.


Development ◽  
2021 ◽  
Author(s):  
Toby G. R. Andrews ◽  
Wolfram Pönisch ◽  
Ewa Paluch ◽  
Benjamin J Steventon ◽  
Elia Benito-Gutierrez

Embryonic tissues are shaped by the dynamic behaviours of their constituent cells. To understand such cell behaviours and how they evolved, new approaches are needed to map out morphogenesis across different organisms. Here, we apply a quantitative approach to learn how the notochord forms during the development of amphioxus, a basally-branching chordate. Using a single-cell morphometrics pipeline, we quantify the geometries of thousands of amphioxus notochord cells, and project them into a common mathematical space, termed morphospace. In morphospace, notochord cells disperse into branching trajectories of cell shape change, revealing a dynamic interplay between cell shape change and growth that collectively contribute to tissue elongation. By spatially mapping these trajectories, we identify conspicuous regional variation, both in developmental timing and trajectory topology. Finally, we show experimentally that, unlike ascidians but like vertebrates, posterior cell division is required in amphioxus to generate full notochord length, thereby suggesting this might be an ancestral chordate trait secondarily lost in ascidians. Altogether, our novel approach reveals that an unexpectedly complex scheme of notochord morphogenesis might have been present in the first chordates.


Development ◽  
1997 ◽  
Vol 124 (4) ◽  
pp. 895-906 ◽  
Author(s):  
M.C. Lane ◽  
R. Keller

Mediolateral cell intercalation is proposed to drive morphogenesis of the primary embryonic axis in Xenopus. Mediolateral intercalation begins in a group of cells called the vegetal alignment zone, a subpopulation of cells in Spemann's organizer, and spreads through much of the marginal zone. To understand the functions of the vegetal alignment zone during gastrulation and axis formation, we have inhibited its formation by disrupting microtubules with nocodazole in early gastrula embryos. In such embryos, mediolateral intercalation, involution and convergent extension of the marginal zone do not occur. Although cell motility continues, and the anterior notochordal and somitic mesoderm differentiate in the pre-involution marginal zone, posterior notochordal and somitic mesoderm do not differentiate. In contrast, microtubule depolymerization in midgastrula embryos, after the vegetal alignment zone has formed, does not inhibit mediolateral cell intercalation, involution and convergent extension, or differentiation of posterior notochord and somites. We conclude that microtubules are required only for orienting and polarizing at stage 101/2 the first cells that undergo mediolateral intercalation and form the vegetal alignment zone, and not for subsequent morphogenesis. These results demonstrate that microtubules are required to form the vegetal alignment zone, and that both microtubules and the vegetal alignment zone play critical roles in the inductive and morphogenetic activities of Spemann's organizer. In addition, our results suggest that Spemann's organizer contains multiple organizers, which act in succession and change their location and function during gastrulation to generate the anterior/posterior axis in Xenopus.


2018 ◽  
Author(s):  
Gonca Erdemci-Tandogan ◽  
Madeline J. Clark ◽  
Jeffrey D. Amack ◽  
M. Lisa Manning

In embryonic development, cell shape changes are essential for building functional organs, but in many cases the mechanisms that precisely regulate these changes remain unknown. We propose that fluid-like drag forces generated by the motion of an organ through surrounding tissue could generate changes to its structure that are important for its function. To test this hypothesis, we study the zebrafish left-right organizer, Kupffer’s vesicle (KV), using experiments and mathematical modeling. During development, monociliated cells that comprise the KV undergo region-specific shape changes along the anterior-posterior axis that are critical for KV function: anterior cells become long and thin, while posterior cells become short and squat. Here, we develop a mathematical vertex-like model for cell shapes, which incorporates both tissue rheology and cell motility, and constrain the model parameters using previously published rheological data for the zebrafish tailbud [Serwane et al.] as well as our own measurements of the KV speed. We find that drag forces due to dynamics of cells surrounding the KV could be sufficient to drive KV cell shape changes during KV development. More broadly, these results suggest that cell shape changes could be driven by dynamic forces not typically considered in models or experiments.


Open Biology ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 200329
Author(s):  
Sandra Casani ◽  
Jordi Casanova ◽  
Marta Llimargas

Intercalation allows cells to exchange positions in a spatially oriented manner in an array of diverse processes, spanning convergent extension in embryonic gastrulation to the formation of tubular organs. However, given the co-occurrence of cell intercalation and changes in cell shape, it is sometimes difficult to ascertain their respective contribution to morphogenesis. A well-established model to analyse intercalation, particularly in tubular organs, is the Drosophila tracheal system. There, fibroblast growth factor (FGF) signalling at the tip of the dorsal branches generates a ‘pulling’ force believed to promote cell elongation and cell intercalation, which account for the final branch extension. Here, we used a variety of experimental conditions to study the contribution of cell elongation and cell intercalation to morphogenesis and analysed their mutual requirements. We provide evidence that cell intercalation does not require cell elongation and vice versa. We also show that the two cell behaviours are controlled by independent but simultaneous mechanisms, and that cell elongation is sufficient to account for full extension of the dorsal branch, while cell intercalation has a specific role in setting the diameter of this structure. Thus, rather than viewing changes in cell shape and cell intercalation as just redundant events that add robustness to a given morphogenetic process, we find that they can also act by contributing to different features of tissue architecture.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1916
Author(s):  
Myriam Canonico ◽  
Grzegorz Konert ◽  
Aurélie Crepin ◽  
Barbora Šedivá ◽  
Radek Kaňa

Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.


2019 ◽  
Author(s):  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Brandon Jew ◽  
Kristina M. Garske ◽  
Zong Miao ◽  
...  

AbstractSingle-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro, 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem.


2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Kristin Little ◽  
Jacob Austerman ◽  
Jenny Zheng ◽  
Karine A. Gibbs

ABSTRACTSwarming on rigid surfaces requires movement of cells as individuals and as a group of cells. For the bacteriumProteus mirabilis, an individual cell can respond to a rigid surface by elongating and migrating over micrometer-scale distances. Cells can form groups of transiently aligned cells, and the collective population is capable of migrating over centimeter-scale distances. To address howP. mirabilispopulations swarm on rigid surfaces, we asked whether cell elongation and single-cell motility are coupled to population migration. We first measured the relationship between agar concentration (a proxy for surface rigidity), single-cell phenotypes, and swarm colony phenotypes. We find that cell elongation and single-cell motility are coupled with population migration on low-percentage hard agar (1% to 2.5%) and become decoupled on high-percentage hard agar (>2.5%). Next, we evaluate how disruptions in lipopolysaccharide (LPS), specifically the O-antigen components, affect responses to hard agar. We find that LPS is not essential for elongation and motility of individual cells, as predicted, and instead functions to broaden the range of agar concentrations on which cell elongation and motility are coupled with population migration. These findings demonstrate that cell elongation and motility are coupled with population migration under a permissive range of surface conditions; increasing agar concentration is sufficient to decouple these behaviors. Since swarm colonies cover greater distances when these steps are coupled than when they are not, these findings suggest that collective interactions amongP. mirabiliscells might be emerging as a colony expands outwards on rigid surfaces.IMPORTANCEHow surfaces influence cell size, cell-cell interactions, and population migration for robust swarmers likeP. mirabilisis not fully understood. Here, we have elucidated how cells change length along a spectrum of sizes that positively correlates with increases in agar concentration, regardless of population migration. Single-cell phenotypes can be decoupled from collective population migration simply by increasing agar concentration. A cell’s lipopolysaccharides function to broaden the range of agar conditions under which cell elongation and single-cell motility remain coupled with population migration. In eukaryotes, the physical environment, such as a surface matrix, can impact cell development, shape, and migration. These findings support the idea that rigid surfaces similarly act on swarming bacteria to impact cell shape, single-cell motility, and collective population migration.


Author(s):  
Wolfgang Kühn ◽  
Gerd Walz

Abnormalities of the cilium, termed ‘ciliopathies’, are the prime suspect in the pathogenesis of renal cyst formation because the gene products of cystic disease-causing genes localize to them, or near them. However, we only partially understand how cilia maintain the geometry of kidney tubules, and how abnormal cilia lead to renal cysts, and the diverse range of diseases attributed to them. Some non-cystic diseases share pathology of the same structures. Although still incompletely understood, cilia appear to orient cells in response to extracellular cues to maintain the overall geometry of a tissue, thereby intersecting with the planar cell polarity (PCP) pathway and the actin cytoskeleton. The PCP pathway controls two morphogenetic programmes, oriented cell division (OCD) and convergent extension (CE) through cell intercalation that both seem to play a critical role in cyst formation. The two-hit theory of cystogenesis, by which loss of the second normal allele causes tubular epithelial cells to form kidney cysts, has been largely borne out. Additional hits and influences may better explain the rate of cyst formation and inter-individual differences in disease progression. Ciliary defects appear to converge on overlapping signalling modules, including mammalian target of rapamycin and cAMP pathways, which can be targeted to treat human cystic kidney disease irrespective of the underlying gene mutation.


Sign in / Sign up

Export Citation Format

Share Document