scholarly journals Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles

Author(s):  
Catherine Z. Chen ◽  
Miao Xu ◽  
Manisha Pradhan ◽  
Kirill Gorshkov ◽  
Jennifer Petersen ◽  
...  

AbstractWhile vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work should contribute to the development of effective treatments against the initial stage of viral infection, thus reducing viral burden in COVID-19 patients.Abstract Figure

2021 ◽  
Author(s):  
Amaresh Mishra ◽  
Nisha Nair ◽  
Amit K. Yadav ◽  
Pratima Solanki ◽  
Jaseela Majeed ◽  
...  

At the end of December 2019, in Wuhan, China, a rapidly spreading unknown virus was reported to have caused coronavirus disease of 2019 (COVID-19). Origin linked to Wuhan’s wholesale food market where live animals are sold. This disease is caused by SARS Coronavirus-2 (SARS-CoV-2), which is closely related to the Severe Acute Respiratory Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This virus shares a high sequence identity with bat-derived SARS-like Coronavirus, which indicating its zoonotic origin. The virus spread globally, provoking widespread attention and panic. This Coronavirus is highly pathogenic and causes mild to severe respiratory disorders. Later, it was declared a global pandemic by the World Health Organization (WHO) due to its highly infectious nature and worldwide mortality rate. This virus is a single-stranded, positive-sense RNA genome, and its genome length about 26 to 32 kb that infects a broad range of vertebrates. The researchers worldwide focus on establishing treatment strategies on drug and vaccine development to prevent this COVID-19 pandemic. A drug repurposing approach has been used to identify a rapid treatment for the people affected by COVID-19, which could be cost-effective and bypass some Food and Drug Association (FDA) regulations to move quickly in phase-3 trials. However, there is no promising therapeutic option available yet. This book chapter addresses current information about the COVID-19 disease, including its origins, impacts, and the novel potential drug candidates that can help treat the COVID-19.


2020 ◽  
Author(s):  
Amit Kumawat ◽  
Sadanandam Namsani ◽  
Debabrata Pramanik ◽  
Sudip Roy ◽  
Jayant K. Singh

Since the onset of global pandemic, the most focused research currently in progress is the development of vaccine candidates and clinical trials of existing FDA approved drugs for other relevant diseases, in order to repurpose them for the COVID-19. Here, we investigate the drug repurposing strategies to counteract the coronavirus infection which involves several potential targetable host proteins involved in viral replication and disease progression. We report the high throughput analysis of literature-derived repurposing drug candidates that can be used to target the genetic regulators known to interact with viral proteins based on experimental and interactome studies. In this work we have performed integrated molecular docking followed by molecular dynamics (MD) simulations and free energy calculations through an expedite insilico process where the number of screened candidates reduces sequentially at every step based on physicochemical information. We elucidate that in addition to the pre-clinical and FDA approved drugs that targets specific regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, Ponatinib) binds to the other gene transcription and translation regulatory protein with higher affinity and may harbour potential for therapeutic uses.<br>


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Qi Zhang ◽  
Catherine Zhengzheng Chen ◽  
Manju Swaroop ◽  
Miao Xu ◽  
Lihui Wang ◽  
...  

Abstract The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-Cov and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, and facilitates the attachment of Spike-bearing viral particles to the cell surface to promote viral entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry and reveals drugs capable of targeting this important step in the viral life cycle.


Author(s):  
Praveen Thaggikuppe Krishnamurthy

: The Coronavirus Disease 2019, a pandemic caused by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is seriously affecting global health and the economy. As the vaccine development takes time, the current research is focused on repurposing FDA approved drugs against the viral target proteins. This review discusses the current understanding of SARS-CoV-2 virology, its target structural proteins (S- glycoprotein), non-structural proteins (3- chymotrypsin-like protease, papain-like protease, RNA-dependent RNA polymerase, and helicase) and accessory proteins, drug discovery strategies (drug repurposing, artificial intelligence, and high-throughput screening), and the current status of antiviral drug development.


2016 ◽  
Vol 91 (2) ◽  
Author(s):  
Thomas Pietschmann

ABSTRACT Chronic hepatitis C virus (HCV) infection causes severe liver disease and affects ca. 146 million individuals. Novel directly acting antivirals targeting HCV have revolutionized treatment. However, high costs limit access to therapy. Recently, several related drugs used in humans to treat allergies or as neuroleptics emerged as potent HCV cell entry inhibitors. Insights into their antiviral modes of action may increase opportunities for drug repurposing in hepatitis C and possibly other important human viral infections.


2020 ◽  
Author(s):  
Shaoli Das ◽  
Kevin Camphausen ◽  
Uma Shankavaram

Abstract The ongoing global pandemic of coronavirus disease 2019 (COVID-19) continues to affect a growing number of populations in different parts of the world. In the current situation, drug repurposing is a viable strategy to combat COVID-19. The drugs targeting the host receptors that interact with SARS-CoV-2 are possible candidates. However, assessment of their effectiveness in COVID-19 patients is necessary before prioritizing them for further study. We attempted to shortlist the candidate drugs using an in-silico approach. First, we analysed two published transcriptomic data sets of COVID-19- and SARS-infected patients compared to healthy individuals to find the key pathways altered after infection. Then, using publicly available drug perturbational data sets in human cell lines from the Broad Institute Connectivity Map (CMAP), we assessed the effects of the approved drugs on the altered pathways. We also used the available pharmacogenomic data sets from the Genomics of Drug Sensitivity in Cancer (GDSC) portal to assess the effects of the altered pathways on resistance or sensitivity to the drugs in human cell lines. Our analysis identified many candidate drugs, some of which are already being investigated for treatment of COVID-19 and can serve as a basis for prioritizing additional viable candidate drugs for COVID-19.


Author(s):  
Sekhar Talluri

SARS-CoV-2 is a betacoronavirus that was first identified during the Wuhan COVID-19 epidemic in 2019. It was listed as a potential global health threat by WHO due to high mortality, high basic reproduction number and lack of clinically approved drugs and vaccines for COVID-19. The genomic sequence of the virus responsible for COVID-19, as well as the experimentally determined three dimensional structure of the Main protease (Mpro) are available. The reported structure of the target Mpro was utilized in this study to identify potential drugs for COVID-19 using virtual high throughput screening. The results of this study confirm earlier preliminary reports based on studies of homologs that some of the drugs approved for treatment of other viral infections also have the potential for treatment of COVID-19. Approved anti-viral drugs that target proteases were ranked for potential effectiveness against COVID-19 and novel candidates for drug repurposing were identified.


2021 ◽  
Author(s):  
Ryan Choi ◽  
Mowei Zhou ◽  
Roger Shek ◽  
Jesse W. Wilson ◽  
Logan Tillery ◽  
...  

AbstractSARS-CoV-2 has caused a global pandemic, and has taken over 1.7 million lives as of mid-December, 2020. Although great progress has been made in the development of effective countermeasures, with several pharmaceutical companies approved or poised to deliver vaccines to market, there is still an unmet need of essential antiviral drugs with therapeutic impact for the treatment of moderate-to-severe COVID-19. Towards this goal, a high-throughput assay was used to screen SARS-CoV-2 nsp15 uracil-dependent endonuclease (endoU) function against 13 thousand compounds from drug and lead repurposing compound libraries. While over 80% of initial hit compounds were pan-assay inhibitory compounds, three hits were confirmed as nsp15 endoU inhibitors in the 1-20 μM range in vitro. Furthermore, Exebryl-1, a β-amyloid anti-aggregation molecule for Alzheimer’s therapy, was shown to have antiviral activity between 10 to 66 μM, in VERO, Caco-2, and Calu-3 cells. Although the inhibitory concentrations determined for Exebryl-1 exceed those recommended for therapeutic intervention, our findings show great promise for further optimization of Exebryl-1 as an nsp15 endoU inhibitor and as a SARS-CoV-2 antiviral.Author summaryDrugs to treat COVID-19 are urgently needed. To address this, we searched libraries of drugs and drug-like molecules for inhibitors of an essential enzyme of the virus that causes COVID-19, SARS-CoV-2 nonstructural protein (nsp)15. We found several molecules that inhibited the nsp15 enzyme function and one was shown to be active in inhibiting the SARS-CoV-2 virus. This demonstrates that searching for SARS-CoV-2 nsp15 inhibitors can lead inhibitors of SARS-CoV-2, and thus therapeutics for COVID-19. We are currently working to see if these inhibitors could be turned into a drug to treat COVID-19.


2020 ◽  
Author(s):  
Soumi Chatterjee ◽  
Bikram Dhara ◽  
Dattatreya Mukherjee ◽  
Arup Kumar Mitra

The world is amidst a public health crisis as the pandemic has shook us to the core. The COVID-19 caused by the novel SARS-CoV-2 is of zoonotic origin and this tries to explain what could have been the possible proximal origins for the disease in humans. Our review aims at addressing the question like what structural or genomic vicissitude enabled the viral outbreak across genera and so efficiently infect the human populace across the globe. We also try to discuss the prospect of drug repurposing and scope for vaccine development considering the rapid genome modification of the virus. Another finding lies into the action of pre-existing drugs when they are applied in combination and probably that shades some light on the therapeutic approaches. Several investigation have been performed but we are still in search of a novel antiviral drug. With that vision, our focus shifted on the evaluation of existing drugs with positive response against the novel corona virus. We also try discussing certain trends including increased immunity to the disease in the population from a particular geographical area.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Patrick Wu ◽  
QiPing Feng ◽  
Vern Eric Kerchberger ◽  
Scott D. Nelson ◽  
Qingxia Chen ◽  
...  

AbstractDiscovering novel uses for existing drugs, through drug repurposing, can reduce the time, costs, and risk of failure associated with new drug development. However, prioritizing drug repurposing candidates for downstream studies remains challenging. Here, we present a high-throughput approach to identify and validate drug repurposing candidates. This approach integrates human gene expression, drug perturbation, and clinical data from publicly available resources. We apply this approach to find drug repurposing candidates for two diseases, hyperlipidemia and hypertension. We screen >21,000 compounds and replicate ten approved drugs. We also identify 25 (seven for hyperlipidemia, eighteen for hypertension) drugs approved for other indications with therapeutic effects on clinically relevant biomarkers. For five of these drugs, the therapeutic effects are replicated in the All of Us Research Program database. We anticipate our approach will enable researchers to integrate multiple publicly available datasets to identify high priority drug repurposing opportunities for human diseases.


Sign in / Sign up

Export Citation Format

Share Document