scholarly journals KRASG12D mutant cells are outcompeted by wild type neighbours in adult pancreas in an EPHA2-dependent manner

2020 ◽  
Author(s):  
William Hill ◽  
Andreas Zaragkoulias ◽  
Beatriz Salvador ◽  
Geraint Parfitt ◽  
Markella Alatsatianos ◽  
...  

SummaryAs we age, our tissues are repeatedly challenged by mutational insult, yet cancer occurrence is a relatively rare event. Cells carrying cancer-causing genetic mutations compete with normal neighbours for space and survival in tissues. However, the mechanisms underlying mutant-normal competition in adult tissues and the relevance of this process to cancer remain incompletely understood. Here, we investigate how the adult pancreas maintains tissue health in vivo following sporadic expression of oncogenic Kras (KrasG12D), the key driver mutation in human pancreatic cancer. We find that when present in tissues in low numbers, KrasG12D mutant cells are outcompeted and cleared from exocrine and endocrine compartments in vivo. Using quantitative 3D tissue imaging, we show that prior to being cleared, KrasG12D cells lose cell volume, segregate from normal cells and decrease E-cadherin-based cell-cell adhesions with normal neighbours. We identify EphA2 receptor is an essential signal in the clearance of KrasG12D cells from exocrine and endocrine tissues in vivo. In the absence of functional EphA2, KrasG12D cells no longer segregate, E-cadherin-based cell-cell adhesions increase and KrasG12D cells are retained in tissues. Retention of KRasG12D cells leads to an increased burden of premalignant pancreatic intraepithelial neoplasia (PanINs) in tissues. Our data show that adult pancreas tissues remodel to clear KrasG12D cells and maintain tissue health. This study provides evidence to support a conserved functional role of EphA2 in Ras-driven cell competition in epithelial tissues and suggests that EphA2 is a novel tumour suppressor in pancreatic cancer.

2014 ◽  
Vol 306 (12) ◽  
pp. E1431-E1441 ◽  
Author(s):  
Hejun Zhao ◽  
Rui Wei ◽  
Liang Wang ◽  
Qing Tian ◽  
Ming Tao ◽  
...  

Glucagon-like peptide-1 (GLP-1) promotes pancreatic β-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shengzhang Lin ◽  
Jianhong Zhang ◽  
Hui Chen ◽  
Kangjie Chen ◽  
Fuji Lai ◽  
...  

Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in bothin vitroandin vivosystems, as well as the possible mechanisms involved.In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990) with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153), a marker of the endoplasmic-reticulum-stress- (ERS-) mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover,in vivostudies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78), phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK), and phosphoeukaryotic initiation factor-2α(phospho-eIF2α), activating transcription factor 4 (ATF4) and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Jiewei Lin ◽  
Zhiwei Xu ◽  
Junjie Xie ◽  
Xiaxing Deng ◽  
Lingxi Jiang ◽  
...  

AbstractAPOL1 encodes a secreted high-density lipoprotein, which has been considered as an aberrantly expressed gene in multiple cancers. Nevertheless, the role of APOL1 in the regulatory mechanisms of pancreatic cancer remains unknown and should be explored. We identified APOL1 was abnormally elevated in human pancreatic cancer tissues compared with that in adjacent tissues and was associated with poor prognosis. The effects of APOL1 in PC cell proliferation, cell cycle, and apoptosis was verified via functional in vitro and in vivo experiments. The results showed that knockdown of APOL1 significantly inhibited the proliferation and promoted apoptosis of pancreatic cancer. In addition, we identified APOL1 could be a regulator of NOTCH1 signaling pathway using bioinformatics tools, qRT-PCR, dual-luciferase reporter assay, and western blotting. In summary, APOL1 could function as an oncogene to promote proliferation and inhibit apoptosis through activating NOTCH1 signaling pathway expression in pancreatic cancer; therefore, it may act as a novel therapeutic target for pancreatic cancer.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2017
Author(s):  
Lital Sharvit ◽  
Rinat Bar-Shalom ◽  
Naiel Azzam ◽  
Yaniv Yechiel ◽  
Solomon Wasser ◽  
...  

Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.


Author(s):  
Huiming Chen ◽  
Junfeng Zhao ◽  
Ningning Jiang ◽  
Zheng Wang ◽  
Chang Liu

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, with a 5-year survival rate of less than 10% because of the limited knowledge of tumor-promoting factors and their underlying mechanism. Diabetes mellitus (DM) and hyperglycemia are risk factors for many cancers, including PDAC, that modulate multiple downstream signaling pathways, such as the wingless/integrated (Wnt)/β-catenin signaling pathway. However, whether hyperglycemia promotes PDAC initiation and progression by activating the Wnt/β-catenin signaling pathway remains unclear. Methods: In this study, we used bioinformatics analysis and clinical specimen analysis to evaluate the activation states of the Wnt/βcatenin signaling pathway. In addition, colony formation assays, Transwell assays and wound-healing assays were used to evaluate the malignant biological behaviors of pancreatic cancer cells (PCs) under hyperglycemic conditions. To describe the effects of hyperglycemia and the Wnt/β-catenin signaling pathway on the initiation of PDAC, we used pancreatitis-driven pancreatic cancer initiation models in vivo and pancreatic acinar cell 3-dimensional culture in vitro. Results: Wnt/β-catenin signaling pathway-related molecules were overexpressed in PDAC tissues/cells and correlated with poor prognosis in PDAC patients. In addition, hyperglycemia exacerbated the abnormal activation of β-catenin in PDAC and enhanced the malignant biological behaviors of PCs in a Wnt/β-catenin signaling pathway-dependent manner. Indeed, hyperglycemia accelerated the formation of pancreatic precancerous lesions by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Conclusion: Hyperglycemia promotes pancreatic cancer initiation and progression by activating the Wnt/β-catenin signaling pathway.


2000 ◽  
Vol 118 (4) ◽  
pp. A540
Author(s):  
Thomas Seufferlein ◽  
Michael J. Seckl ◽  
Michael Beil ◽  
Hardi Luhrs ◽  
Roland M. Schmid ◽  
...  

2020 ◽  
Author(s):  
Lucía Cordero-Espinoza ◽  
Timo N. Kohler ◽  
Anna M. Dowbaj ◽  
Bernhard Strauss ◽  
Olga Sarlidou ◽  
...  

AbstractIn the homeostatic liver, ductal cells intermingle with a microenvironment of endothelial and mesenchymal cells to form the functional unit of the portal tract. Ductal cells proliferate rarely in homeostasis but do so transiently after tissue injury to replenish any lost epithelium. We have shown that liver ductal cells can be expanded as liver organoids that recapitulate several of the cell-autonomous mechanisms of regeneration, but lack the stromal cell milieu of the biliary tract in vivo. Here, we describe a subpopulation of SCA1+ periportal mesenchymal cells that closely surrounds ductal cells in vivo and exerts a dual control on their proliferative capacity. Mesenchymal-secreted mitogens support liver organoid formation and expansion from differentiated ductal cells. However, direct mesenchymal-to-ductal cell-cell contact, established following a microfluidic co-encapsulation that enables the cells to self-organize into chimeric organoid structures, abolishes ductal cell proliferation in a mesenchyme-dose dependent manner. We found that it is the ratio between mesenchymal and epithelial cell contacts that determines the net outcome of ductal cell proliferation both in vitro, and in vivo, during damage-regeneration. SCA1+ mesenchymal cells control ductal cell proliferation dynamics by a mechanism involving, at least in part, Notch signalling activation. Our findings underscore how the relative abundance of cell-cell contacts between the epithelium and its mesenchymal microenvironment are key regulatory cues involved in the control of tissue regeneration.SummaryIn the homeostatic liver, the ductal epithelium intermingles with a microenvironment of stromal cells to form the functional unit of the portal tract. Ductal cells proliferate rarely in homeostasis but do so transiently after tissue injury. We have shown that these cells can be expanded as liver organoids that recapitulate several of the cell-autonomous mechanisms of regeneration, but lack the stromal cell milieu of the portal tract in vivo. Here, we describe a subpopulation of SCA1+ periportal mesenchymal niche cells that closely surrounds ductal cells in vivo and exerts a dual control on their proliferative capacity. Mesenchymal-secreted mitogens support liver organoid formation and expansion from differentiated ductal cells. However, direct mesenchymal-to-ductal cell-cell contact, established through a microfluidic co-encapsulation method that enables the cells to self-organize into chimeric organoid structures, abolishes ductal cell proliferation in a mesenchyme-dose dependent manner. We found that it is the ratio between mesenchymal and epithelial cell contacts that determines the net outcome of ductal cell proliferation both in vitro, and in vivo, during damage-regeneration. SCA1+ mesenchymal cells control ductal cell proliferation dynamics by a mechanism involving, at least in part, Notch signalling activation. Our findings re-evaluate the concept of the cellular niche, whereby the proportions of cell-cell contacts between the epithelium and its mesenchymal niche, and not the absolute cell numbers, are the key regulatory cues involved in the control of tissue regeneration.


2021 ◽  
Vol 11 ◽  
Author(s):  
Congjun Zhang ◽  
Shuangyan Ou ◽  
Yuan Zhou ◽  
Pei Liu ◽  
Peiying Zhang ◽  
...  

ObjectivePancreatic cancer is one of the most lethal human malignancies. Gemcitabine is widely used to treat pancreatic cancer, and the resistance to chemotherapy is the major difficulty in treating the disease. N6-methyladenosine (m6A) modification, which regulates RNA splicing, stability, translocation, and translation, plays critical roles in cancer physiological and pathological processes. METTL14, an m6A Lmethyltransferase, was found deregulated in multiple cancer types. However, its role in gemcitabine resistance in pancreatic cancer remains elusive.MethodsThe mRNA and protein level of m6A modification associated genes were assessed by QRT-PCR and western blotting. Then, gemcitabine‐resistant pancreatic cancer cells were established. The growth of pancreatic cancer cells were analyzed using CCK8 assay and colony formation assay. METTL14 was depleted by using shRNA. The binding of p65 on METTL14 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Protein level of deoxycytidine kinase (DCK) and cytidine deaminase (CDA) was evaluated by western blotting. In vivo experiments were conducted to further confirm the critical role of METTL14 in gemcitabine resistance.ResultsWe found that gemcitabine treatment significantly increased the expression of m6A methyltransferase METTL14, and METTL14 was up-regulated in gemcitabine-resistance human pancreatic cancer cells. Suppression of METTL14 obviously increased the sensitivity of gemcitabine in resistant cells. Moreover, we identified that transcriptional factor p65 targeted the promoter region of METTL14 and up-regulated its expression, which then increased the expression of cytidine deaminase (CDA), an enzyme inactivates gemcitabine. Furthermore, in vivo experiment showed that depletion of METTL14 rescue the response of resistance cell to gemcitabine in a xenograft model.ConclusionOur study suggested that METTL14 is a potential target for chemotherapy resistance in pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document