scholarly journals Confinement Discerns Swarmers from Planktonic Bacteria

2020 ◽  
Author(s):  
Weijie Chen ◽  
Neha Mani ◽  
Hamid Karani ◽  
Hao Li ◽  
Sridhar Mani ◽  
...  

AbstractPowered by flagella, many bacterial species exhibit collective motion on a solid surface commonly known as swarming. As a natural example of active matter, swarming is also an essential biological phenotype associated with virulence, chemotaxis, and host pathogenesis. Physical changes like cell elongation and hyper flagellation have been shown to accompany the swarming phenotype. However, less noticeable, are the contrasts of collective motion between the swarming cells and the planktonic cells of comparable cell density. Here, we show that confining bacterial movement in designed dimensions allows distinguishing bacterial swarming from collective swimming. We found that on a soft agar plate, a novel bacterial strain Enterobacter sp. SM3 exhibited different motion patterns in swarming and planktonic states when confined to circular microwells of a specific range of sizes. When the confinement diameter was between 40 μm and 90 μm, swarming SM3 formed a single swirl motion pattern in the microwells whereas planktonic SM3 showed multiple swirls. Similar differential behavior is observed across a range of randomly selected gram-negative bacteria. We hypothesize that the “rafting behavior” of the swarming bacteria upon dilution might account for the motion pattern difference. We verified our conjectures via numerical simulations where swarming cells are modeled with lower repulsion and more substantial alignment force. The novel technical approach enabled us to observe swarming on a non-agar tissue surface for the first time. Our work provides the basis for characterizing bacterial swarming under more sophisticated environments, such as polymicrobial swarmer detection, and in vivo swarming exploration.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Weijie Chen ◽  
Neha Mani ◽  
Hamid Karani ◽  
Hao Li ◽  
Sridhar Mani ◽  
...  

Powered by flagella, many bacterial species exhibit collective motion on a solid surface commonly known as swarming. As a natural example of active matter, swarming is also an essential biological phenotype associated with virulence, chemotaxis, and host pathogenesis. Physical changes like cell elongation and hyper flagellation have been shown to accompany the swarming phenotype. Less studied, however, are the contrasts of collective motion between the swarming cells and their counterpart planktonic cells of comparable cell density. Here, we show that confining bacterial movement in circular microwells allows distinguishing bacterial swarming from collective swimming. On a soft agar plate, a novel bacterial strain Enterobacter sp. SM3 in swarming and planktonic states exhibited different motion patterns when confined to circular microwells of a specific range of sizes. When the confinement diameter was between 40 μm and 90 μm, swarming SM3 formed a single swirl motion pattern in the microwells whereas planktonic SM3 formed multiple swirls. Similar differential behavior is observed across several other species of gram-negative bacteria. We also observed 'rafting behavior' of swarming bacteria upon dilution. We hypothesize that the rafting behavior might account for the motion pattern difference. We were able to predict these experimental features via numerical simulations where swarming cells are modeled with stronger cell-cell alignment interaction. Our experimental design using PDMS microchip disk arrays enabled us to observe bacterial swarming on murine intestinal surface suggesting a new method for characterizing bacterial swarming under complex environments, such as in polymicrobial niches, and for in vivo swarming exploration.


2015 ◽  
Vol 83 (5) ◽  
pp. 2089-2098 ◽  
Author(s):  
Seongok Kim ◽  
Hyelyeon Hwang ◽  
Kwang-Pyo Kim ◽  
Hyunjin Yoon ◽  
Dong-Hyun Kang ◽  
...  

Cronobacterspp. are opportunistic pathogens that cause neonatal meningitis and sepsis with high mortality in neonates. Despite the peril associated withCronobacterinfection, the mechanisms of pathogenesis are still being unraveled. Hfq, which is known as an RNA chaperone, participates in the interaction with bacterial small RNAs (sRNAs) to regulate posttranscriptionally the expression of various genes. Recent studies have demonstrated that Hfq contributes to the pathogenesis of numerous species of bacteria, and its roles are varied between bacterial species. Here, we tried to elucidate the role of Hfq inC. sakazakiivirulence. In the absence ofhfq,C. sakazakiiwas highly attenuated in disseminationin vivo, showed defects in invasion (3-fold) into animal cells and survival (103-fold) within host cells, and exhibited low resistance to hydrogen peroxide (102-fold). Remarkably, the loss ofhfqled to hypermotility on soft agar, which is contrary to what has been observed in other pathogenic bacteria. The hyperflagellated bacteria were likely to be attributable to the increased transcription of genes associated with flagellar biosynthesis in a strain lackinghfq. Together, these data strongly suggest thathfqplays important roles in the virulence ofC. sakazakiiby participating in the regulation of multiple genes.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009153
Author(s):  
George Courcoubetis ◽  
Manasi S. Gangan ◽  
Sean Lim ◽  
Xiaokan Guo ◽  
Stephan Haas ◽  
...  

Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and metabolic activity of billions of cells. A recent study on pattern formation in wild bacterial isolates has revealed unique collective behaviors of the bacteria Enterobacter cloacae. As in other bacterial species, Enterobacter cloacae form macroscopic aggregates. Once formed, these bacterial clusters can migrate several millimeters, sometimes resulting in the merging of two or more clusters. To better understand these phenomena, we examine the formation and dynamics of thousands of bacterial clusters that form within a 22 cm square culture dish filled with soft agar over two days. At the macroscale, the aggregates display spatial order at short length scales, and the migration of cell clusters is superdiffusive, with a merging acceleration that is correlated with aggregate size. At the microscale, aggregates are composed of immotile cells surrounded by low density regions of motile cells. The collective movement of the aggregates is the result of an asymmetric flux of bacteria at the boundary. An agent-based model is developed to examine how these phenomena are the result of both chemotactic movement and a change in motility at high cell density. These results identify and characterize a new mechanism for collective bacterial motility driven by a transient, density-dependent change in motility.


Author(s):  
Chang-Beom Kim ◽  
Edward Steager ◽  
Min Jun Kim

A tracking algorithm was developed to study the velocity field of flagellated bacteria, Serratia marcescens, swarming on a soft agar plate. Average velocities for local regions regularly arranged over the entire flow field were investigated rather than those for individual bacterium. The velocity field of the bacteria typically featured the combination of curvilinear translation and vortex modes. They repeated these patterns for a short time period, forming several groups and dissipating. To further investigate the flow patterns generated by the collective motion of the swarming bacteria, the velocity field on the swarm was spatially correlated.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2383
Author(s):  
Francesco Roncato ◽  
Ofer Regev ◽  
Sara W. Feigelson ◽  
Sandeep Kumar Yadav ◽  
Lukasz Kaczmarczyk ◽  
...  

The mechanisms by which the nuclear lamina of tumor cells influences tumor growth and migration are highly disputed. Lamin A and its variant lamin C are key lamina proteins that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C in two prototypic metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell squeezing through rigid pores, and reduced heterochromatin content. Surprisingly, both lamin A/C knockdown cells grew poorly in 3D spheroids within soft agar, and lamin A/C deficient cells derived from spheroids transcribed lower levels of the growth regulator Yap1. Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through lung capillaries, was not elevated by lamin A/C knockdown and their metastasis in lungs was even dramatically reduced. Our results are the first indication that reduced lamin A/C content in distinct types of highly metastatic cancer cells does not elevate their transendothelial migration (TEM) capacity and diapedesis through lung vessels but can compromise lung metastasis at a post extravasation level.


2009 ◽  
Vol 56 (4) ◽  
pp. 1236-1244 ◽  
Author(s):  
B. Carelsen ◽  
R. Jonges ◽  
S.D. Strackee ◽  
M. Maas ◽  
P. van Kemenade ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fatemeh Ostadhossein ◽  
Parikshit Moitra ◽  
Esra Altun ◽  
Debapriya Dutta ◽  
Dinabandhu Sar ◽  
...  

AbstractDental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


Sign in / Sign up

Export Citation Format

Share Document