scholarly journals A genome-scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures

Author(s):  
Song-Min Schinn ◽  
Carly Morrison ◽  
Wei Wei ◽  
Lin Zhang ◽  
Nathan E. Lewis

AbstractThe control of nutrient availability is critical to large-scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time-consuming and thus is difficult to implement for real-time in situ bioprocess control. Genome-scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism, and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through this we demonstrate accurate and time-course dependent prediction of individual amino acid concentration in culture medium throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient depletion or provide early predictions of failed bioreactor runs.

Author(s):  
Song-Min Schinn ◽  
Carly Morrison ◽  
Wei Wei ◽  
Lin Zhang ◽  
Nathan E. Lewis

AbstractGenome-scale metabolic models describe cellular metabolism with mechanistic detail. Given their high complexity, such models need to be parameterized correctly to yield accurate predictions and avoid overfitting. Effective parameterization has been well-studied for microbial models, but it remains unclear for higher eukaryotes, including mammalian cells. To address this, we enumerated model parameters that describe key features of cultured mammalian cells – including cellular composition, bioprocess performance metrics, mammalian-specific pathways, and biological assumptions behind model formulation approaches. We tested these parameters by building thousands of metabolic models and evaluating their ability to predict the growth rates of a panel of phenotypically diverse Chinese Hamster Ovary cell clones. We found the following considerations to be most critical for accurate parameterization: (1) cells limit metabolic activity to maintain homeostasis, (2) cell morphology and viability change dynamically during a growth curve, and (3) cellular biomass has a particular macromolecular composition. Depending on parameterization, models predicted different metabolic phenotypes, including contrasting mechanisms of nutrient utilization and energy generation, leading to varying accuracies of growth rate predictions. Notably, accurate parameter values broadly agreed with experimental measurements. These insights will guide future investigations of mammalian metabolism.


2018 ◽  
Author(s):  
Jeanne M. O. Eloundou-Mbebi ◽  
Anika Küken ◽  
Georg Basler ◽  
Zoran Nikoloski

AbstractCellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component’s concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.Author SummaryWe present a computational approach for inferring concentration ranges from genome-scale metabolic models. The approach specifies a determinant and molecular mechanism underling facile control of concentration ranges for components in large-scale cellular networks. Most importantly, the predictions about concentration ranges do not require knowledge of kinetic parameters (which are difficult to specify at a genome scale), provided measurements of concentrations in a reference state. The approach assumes that reaction rates follow the mass action law used in the derivations of other types of kinetics. We apply the approach with large-scale kinetic and stoichiometric metabolic models of organisms from different kingdoms of life to show that we can identify a proportion of metabolites to which our approach is applicable. By challenging the predictions of concentration ranges in the genome-scale metabolic network of E. coli with real-world data sets, we further demonstrate the prediction power and limitations of the approach.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1765-1778
Author(s):  
Gregory J Budziszewski ◽  
Sharon Potter Lewis ◽  
Lyn Wegrich Glover ◽  
Jennifer Reineke ◽  
Gary Jones ◽  
...  

Abstract We have undertaken a large-scale genetic screen to identify genes with a seedling-lethal mutant phenotype. From screening ~38,000 insertional mutant lines, we identified >500 seedling-lethal mutants, completed cosegregation analysis of the insertion and the lethal phenotype for >200 mutants, molecularly characterized 54 mutants, and provided a detailed description for 22 of them. Most of the seedling-lethal mutants seem to affect chloroplast function because they display altered pigmentation and affect genes encoding proteins predicted to have chloroplast localization. Although a high level of functional redundancy in Arabidopsis might be expected because 65% of genes are members of gene families, we found that 41% of the essential genes found in this study are members of Arabidopsis gene families. In addition, we isolated several interesting classes of mutants and genes. We found three mutants in the recently discovered nonmevalonate isoprenoid biosynthetic pathway and mutants disrupting genes similar to Tic40 and tatC, which are likely to be involved in chloroplast protein translocation. Finally, we directly compared T-DNA and Ac/Ds transposon mutagenesis methods in Arabidopsis on a genome scale. In each population, we found only about one-third of the insertion mutations cosegregated with a mutant phenotype.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Georg Basler ◽  
Alisdair R. Fernie ◽  
Zoran Nikoloski

Methodological and technological advances have recently paved the way for metabolic flux profiling in higher organisms, like plants. However, in comparison with omics technologies, flux profiling has yet to provide comprehensive differential flux maps at a genome-scale and in different cell types, tissues, and organs. Here we highlight the recent advances in technologies to gather metabolic labeling patterns and flux profiling approaches. We provide an opinion of how recent local flux profiling approaches can be used in conjunction with the constraint-based modeling framework to arrive at genome-scale flux maps. In addition, we point at approaches which use metabolomics data without introduction of label to predict either non-steady state fluxes in a time-series experiment or flux changes in different experimental scenarios. The combination of these developments allows an experimentally feasible approach for flux-based large-scale systems biology studies.


2010 ◽  
Vol 192 (20) ◽  
pp. 5534-5548 ◽  
Author(s):  
Matthew A. Oberhardt ◽  
Joanna B. Goldberg ◽  
Michael Hogardt ◽  
Jason A. Papin

ABSTRACT System-level modeling is beginning to be used to decipher high throughput data in the context of disease. In this study, we present an integration of expression microarray data with a genome-scale metabolic reconstruction of P seudomonas aeruginosa in the context of a chronic cystic fibrosis (CF) lung infection. A genome-scale reconstruction of P. aeruginosa metabolism was tailored to represent the metabolic states of two clonally related lineages of P. aeruginosa isolated from the lungs of a CF patient at different points over a 44-month time course, giving a mechanistic glimpse into how the bacterial metabolism adapts over time in the CF lung. Metabolic capacities were analyzed to determine how tradeoffs between growth and other important cellular processes shift during disease progression. Genes whose knockouts were either significantly growth reducing or lethal in silico were also identified for each time point and serve as hypotheses for future drug targeting efforts specific to the stages of disease progression.


Sign in / Sign up

Export Citation Format

Share Document