scholarly journals Q-STARZ: Quantitative Spatial and Temporal Assessment of Regulatory element activity in Zebrafish

2020 ◽  
Author(s):  
Shipra Bhatia ◽  
Wendy Bickmore ◽  
Dirk Jan Kleinjan ◽  
Kirsty Uttley ◽  
Anita Mann ◽  
...  

Noncoding regions of the genome harbouring cis-regulatory elements (CREs) or enhancers drive spatial and temporal gene expression. Mutations or single nucleotide polymorphisms (SNPs) in enhancers have been widely implicated in human diseases and disease-predispositions. However, our ability to assay the regulatory potential of genetic variants in enhancers is currently very limited, in part because of the need to assay these elements in an appropriate biological context. Here, we describe a method for simultaneous quantitative assessment of the spatial and temporal activity of wild-type (Wt) and disease-associated, mutant (Mut) human CRE alleles using live imaging in zebrafish embryonic development. We generated transgenic lines harbouring a dual-CRE dual-reporter cassette in a pre-defined neutral docking site in the zebrafish genome. Using this single transgenic cassette, the functional activity of each CRE allele is reported via expression of a specific fluorescent reporter, allowing the simultaneous visualisation of the activity of both alleles. This can reveal where and when in embryonic development the wild-type allele is active and how this activity is altered by the disease-associated mutation.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shipra Bhatia ◽  
Dirk Jan Kleinjan ◽  
Kirsty Uttley ◽  
Anita Mann ◽  
Nefeli Dellepiane ◽  
...  

Mutations or genetic variation in noncoding regions of the genome harbouring cis-regulatory elements (CREs), or enhancers, have been widely implicated in human disease and disease risk. However, our ability to assay the impact of these DNA sequence changes on enhancer activity is currently very limited because of the need to assay these elements in an appropriate biological context. Here, we describe a method for simultaneous quantitative assessment of the spatial and temporal activity of wild-type and disease-associated mutant human CRE alleles using live imaging in zebrafish embryonic development. We generated transgenic lines harbouring a dual-CRE dual-reporter cassette in a pre-defined neutral docking site in the zebrafish genome. The activity of each CRE allele is reported via expression of a specific fluorescent reporter, allowing simultaneous visualisation of where and when in development the wild-type allele is active and how this activity is altered by mutation.


2018 ◽  
Author(s):  
Joris van Arensbergen ◽  
Ludo Pagie ◽  
Vincent FitzPatrick ◽  
Marcel de Haas ◽  
Marijke Baltissen ◽  
...  

AbstractMost of the millions of single-nucleotide polymorphisms (SNPs) in the human genome are non-coding, and many overlap with putative regulatory elements. Genome-wide association studies have linked many of these SNPs to human traits or to gene expression levels, but rarely with sufficient resolution to identify the causal SNPs. Functional screens based on reporter assays have previously been of insufficient throughput to test the vast space of SNPs for possible effects on enhancer and promoter activity. Here, we have leveraged the throughput of the SuRE reporter technology to survey a total of 5.9 million SNPs, including 57% of the known common SNPs. We identified more than 30 thousand SNPs that alter the activity of putative regulatory elements, often in a cell-type specific manner. These data indicate that a large proportion of human non-coding SNPs may affect gene regulation. Integration of these SuRE data with genome-wide association studies may help pinpoint SNPs that underlie human traits.


2019 ◽  
Author(s):  
Allison N. Catizone ◽  
Gizem Karsli Uzunbas ◽  
Petra Celadova ◽  
Sylvia Kuang ◽  
Daniel Bose ◽  
...  

AbstractThe master tumor suppressor p53 controls transcription of a wide-ranging gene network involved in apoptosis, cell cycle arrest, DNA damage repair, and senescence. Recent studies revealed pervasive binding of p53 to cis-regulatory elements (CRE), which are non-coding segments of DNA that spatially and temporally control transcription through the combinatorial binding of local transcription factors (TFs). Although the role of p53 as a strong trans-activator of gene expression is well known, the co-regulatory factors and local sequences acting at p53-bound CREs are comparatively understudied. We designed and executed a massively parallel reporter assay (MPRA) to investigate the effect of transcription factor binding motifs and local sequence context on p53-bound CRE activity. Our data indicate that p53-bound CREs are both positively and negatively affected by alterations in local sequence context and changes to co-regulatory TF motifs. We identified a SP1/KLF family motif located in an intronic p53 CRE that is required for the endogenous expression of the p53-dependent gene CCNG1. We also identified ATF3 as a factor that co-regulates the expression of the p53-dependent gene GDF15 through binding with p53 in an upstream CRE. Loss of either p53 or ATF3 severely reduces CRE activity and alters endogenous GDF15 mRNA levels in the cell. Our data suggests that p53 has the flexibility to cooperate with a variety of transcription factors in order to regulate CRE activity. By utilizing different sets of co-factors across CREs, we hypothesize that p53 activity is guarded against loss of any one regulatory partner allowing for dynamic and redundant control of p53-mediated transcription.


2020 ◽  
Vol 48 (8) ◽  
pp. 4195-4213 ◽  
Author(s):  
Allison N Catizone ◽  
Gizem Karsli Uzunbas ◽  
Petra Celadova ◽  
Sylvia Kuang ◽  
Daniel Bose ◽  
...  

Abstract The master tumor suppressor p53 controls transcription of a wide-ranging gene network involved in apoptosis, cell cycle arrest, DNA damage repair, and senescence. Recent studies revealed pervasive binding of p53 to cis-regulatory elements (CREs), which are non-coding segments of DNA that spatially and temporally control transcription through the combinatorial binding of local transcription factors. Although the role of p53 as a strong trans-activator of gene expression is well known, the co-regulatory factors and local sequences acting at p53-bound CREs are comparatively understudied. We designed and executed a massively parallel reporter assay (MPRA) to investigate the effect of transcription factor binding motifs and local sequence context on p53-bound CRE activity. Our data indicate that p53-bound CREs are both positively and negatively affected by alterations in local sequence context and changes to co-regulatory TF motifs. Our data suggest p53 has the flexibility to cooperate with a variety of transcription factors in order to regulate CRE activity. By utilizing different sets of co-factors across CREs, we hypothesize that global p53 activity is guarded against loss of any one regulatory partner, allowing for dynamic and redundant control of p53-mediated transcription.


2021 ◽  
Author(s):  
Hila Barzilai-Tutsch ◽  
Valerie Morin ◽  
Gauthier Toulouse ◽  
Stephen Firth ◽  
Christophe Marcelle ◽  
...  

The Wnt/beta-catenin signaling pathway is highly conserved throughout evolution and it plays crucial roles in several developmental and pathological processes. Wnt ligands can act at a considerable distance from their sources and it is therefore necessary to examine not only the Wnt-producing but also the Wnt-receiving cells and tissues to fully appreciate the many functions of this pathway. To monitor Wnt activity, multiple tools have been designed which consist of multimerized Wnt signaling response elements (TCF/LEF binding sites) driving the expression of fluorescent reporter proteins (e.g. GFP, RFP) or of LacZ. The high stability of those reporters leads to a considerable accumulation in cells activating the pathway, thereby making them easily detectable. However, this makes them unsuitable to follow temporal changes of the pathway activity during dynamic biological events. Even though fluorescent transcriptional reporters can be destabilized to shorten their half-lives, this dramatically reduces signal intensities, particularly when applied in vivo. To alleviate these issues, we developed two transgenic quail lines in which high copy number (12x or 16x) of the TCF/LEF binding sites drive the expression of destabilized GFP variants. Translational enhancer sequences derived from viral mRNAs were used to increase signal intensity and specificity. This resulted in transgenic lines efficient for the characterisation of TCF/beta-catenin transcriptional dynamic activities during embryogenesis, including using in vivo imaging. Our analyses demonstrate the use of this transcriptional reporter to unveil novel aspects of Wnt signaling, thus opening new routes of investigation into the role of this pathway during amniote embryonic development.


2018 ◽  
Author(s):  
Francesco N. Carelli ◽  
Angélica Liechti ◽  
Jean Halbert ◽  
Maria Warnefors ◽  
Henrik Kaessmann

ABSTRACTThe spatiotemporal control of gene expression exerted by promoters and enhancers is central for organismal development, physiology and behaviour. These two types of regulatory elements have long been distinguished from each other based on their function, but recent work highlighted common architectural and functional features. It also suggested that inheritable alterations in the epigenetic and sequence context of regulatory elements might underlie evolutionary changes of their principal activity, which could result in changes in the transcriptional profile of genes under their control or even facilitate the birth of new genes. Here, based on integrated cross-mammalian analyses of DNase hypersensitivity, chromatin modification and transcriptional data, we provide support for this hypothesis by detecting 449 regulatory elements with signatures of activity turnover in sister species from the primate and rodent lineages (termed “P/E” elements). Through the comparison with outgroup species, we defined the directionality of turnover events, which revealed that most instances represent transformations of ancestral enhancers into promoters, leading to the emergence of species-specific transcribed loci or 5’ exons. Notably, P/E elements have distinct GC sequence compositions and stabilizing 5’ splicing (U1) regulatory motif patterns, which may predispose them to functional repurposing during evolution. Moreover, we trace changes in the U1 and polyadenylation signal densities and distributions that accompanied and likely drove the evolutionary activity switches. Overall, our work suggests rather widespread evolutionary remodelling of regulatory element functions. Functional repurposing thus represents a notable mechanism that likely facilitated regulatory innovation and the origination of new genes and exons during mammalian evolution.


2019 ◽  
Vol 51 (7) ◽  
pp. 1160-1169 ◽  
Author(s):  
Joris van Arensbergen ◽  
Ludo Pagie ◽  
Vincent D. FitzPatrick ◽  
Marcel de Haas ◽  
Marijke P. Baltissen ◽  
...  

2021 ◽  
Author(s):  
Samuel A. Rose ◽  
Aleksandra Wroblewska ◽  
Maxime Dhainaut ◽  
Hideyuki Yoshida ◽  
Jonathan M. Shaffer ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Madhavi Latha Gandla ◽  
Niklas Mähler ◽  
Sacha Escamez ◽  
Tomas Skotare ◽  
Ogonna Obudulu ◽  
...  

Abstract Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen (Populus tremula × tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.


Sign in / Sign up

Export Citation Format

Share Document